Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A, đường cao AH: AB.AC=AH.BC
Xét tam giác AHC vuông tại H, đường cao HF : AF.AC=AH2
Xét tam giác AHB vuông tại H, đường cao HE: AE.AB=AH2
Nhân các đẳng thức trên vế theo vế : AE.AF.AB.AC=AH4 => 2SAEF.AH.BC=AH4 => SAEF=x3/4a
Vậy SAEF lớn nhất khi x lớn nhất, khi đó đường cao của tam giác vuông là lớn nhất --> trùng với trung tuyến --> x=a
Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên
A B C D E F H
Bài làm:
Ta có: \(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\)
\(=\left(\frac{AH}{HD}+1\right)+\left(\frac{BH}{HE}+1\right)+\left(\frac{CH}{HF}+1\right)-3\)
\(=\frac{AH+HD}{HD}+\frac{BH+HE}{HE}+\frac{CH+HF}{HF}-3\)
\(=\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}-3\)
\(=\frac{S_{ABC}}{S_{BHC}}+\frac{S_{ABC}}{S_{AHC}}+\frac{S_{ABC}}{S_{AHB}}-3\)
\(=S_{ABC}\left(\frac{1}{S_{BHC}}+\frac{1}{S_{AHC}}+\frac{1}{S_{AHB}}\right)-3\)
\(\ge S_{ABC}\cdot\frac{9}{S_{BHC}+S_{AHC}+S_{AHB}}-3\)
\(=S_{ABC}\cdot\frac{9}{S_{ABC}}-3\)
\(=9-3=6\)
Dấu "=" xảy ra khi H là trọng tâm tam giác ABC
=> Tam giác ABC đều => AB = AC vô lý
=> Không xảy ra dấu bằng
=> đpcm
\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)
\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)
\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)
\("="\Leftrightarrow x=1\)
Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1
A B C D I K H L
Trên cạnh CD lấy điểm L sao cho ^DAL = ^xAB = 150. Khi đó ^KAL = ^BAD - ^xAB - ^DAL = 900
Xét \(\Delta\)ALD và \(\Delta\)AIB: AD = AB, ^ADL = ^ABI (=600), ^DAL = ^BAI (=150) => \(\Delta\)ALD = \(\Delta\)AIB (g.c.g)
=> AI = AL (2 cạnh tuơng ứng). Xét \(\Delta\)AKL có ^KAL = 900 (cmt), đường cao AH
Suy ra \(\frac{1}{AL^2}+\frac{1}{AK^2}=\frac{1}{AH^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}a\right)^2}=\frac{4}{3a^2}\)(Hệ thức luợng tam giác vuông + Tỉ số lượng giác)
Hay \(\frac{1}{AI^2}+\frac{1}{AK^2}=\frac{4}{3a^2}\) (Vì AL = AI). Kết luận ...
Vẽ đường kính AD
^ACD là góc nội tiếp chắn nửa đường tròn nên là góc vuông => AC⊥CD
Mà BH⊥AC (gt) nên CD // BH (1)
Tương tự, ta có: BD // CH (2)
Từ (1) và (2) suy ra BHCD là hình bình hành
∆OBC cân tại O (do có hai cạnh OB và OC là bán kính của đường tròn tâm O) có OI là đường cao nên cũng là trung tuyến => I là trung điểm của BC do đó I cũng là trung điểm của HD
Có O là trung điểm của AD (gt), I là trung điểm của HD (cmt) nên OI là đường trung bình của ∆AHD => AH = 2OI (đpcm)
C S N I M O K F A B D H
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )