K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AHMQ có

\(\widehat{AHM}\) và \(\widehat{AQM}\) là hai góc đối

\(\widehat{AHM}+\widehat{AQM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AHMQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

nên A,H,M,Q cùng nằm trên một đường tròn(đpcm)

b) Ta có: AHMQ là tứ giác nội tiếp(cmt)

nên \(\widehat{QAH}+\widehat{QMH}=180^0\)(Định lí tứ giác nội tiếp)

\(\Leftrightarrow\widehat{QAB}+\widehat{QMN}=180^0\)

mà \(\widehat{QAB}+\widehat{NAB}=180^0\)(hai góc kề bù)

nên \(\widehat{QMN}=\widehat{NAB}\)(1)

Xét (O) có

\(\widehat{NAB}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)

\(\widehat{BMN}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)

Do đó: \(\widehat{NAB}=\widehat{BMN}\)(Hệ quả góc nội tiếp)(2)

Từ (1) và (2) suy ra \(\widehat{QMN}=\widehat{BMN}\)

mà tia MN nằm giữa hai tia MQ và MB

nên MN là tia phân giác của \(\widehat{QMB}\)(đpcm)

22 tháng 3 2020

Bạn tự vé hình nhé! Có 2 cách để vẽ hình

Mình giải câu (d) cho bạn nhé
Ta có: \(\hept{\begin{cases}2S_{\Delta MAN}=MQ\cdot AN\\2S_{\Delta MBN}=MP\cdot BN\end{cases}}\)

Cộng vế với vế ta được \(2S_{\Delta MAN}+2S_{\Delta MBN}=MQ\cdot AN+MP\cdot BN\)

Ta lại có:

\(2S_{\Delta MAN}+2S_{\Delta MBN}=2\left(S_{\Delta MAN}+S_{\Delta MBN}\right)=2\cdot\frac{AB\times MN}{2}=AB\cdot MN\)

Vậy \(MQ\cdot AN+MP\cdot BN=AB\cdot MN\)

Mà AB không đổi nên tích AB x MN lớn nhất 

<=> MN lớn nhất

<=> MN là đường kính

<=> M là điểm chính giữa cung AB

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

NV
23 tháng 5 2019

Làm câu d:

Ta có \(S_{\Delta MAN}=\frac{1}{2}MQ.AN\Rightarrow MQ.AN=2S_{MAN}\)

\(S_{\Delta MBN}=\frac{1}{2}MP.BN\Rightarrow MP.BN=2S_{MBN}\)

\(\Rightarrow MQ.AN+MP.BN=2\left(S_{MAN}+S_{MBN}\right)=2.S_{AMBN}\)

Mà tứ giác AMBN là tứ giác có 2 đường chéo AB, MN vuông góc nên theo công thức diện tích ta có: \(S_{AMBN}=\frac{1}{2}AB.MN\)

\(\Rightarrow MQ.AN+MP.BN=AB.MN\)

Do AB cố định \(\Rightarrow MQ.AN+MP.BN\) đạt max khi MN đạt max

Mà MN là dây cung \(\Rightarrow MN\le\) đường kính \(\Rightarrow MN_{max}\) khi MN là 1 đường kính hay MN đi qua O hay MN đi qua trung điểm AB \(\Rightarrow M\) nằm chính giữa cung AB

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.