Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc CND=1/2*180=90 độ
Vì góc CNE+góc CKE=180 độ
nên CNEK nội tiếp
2: Xét ΔMNE và ΔMBC có
góc MNE=góc MBC
góc M chung
=>ΔMNE đồng dạng với ΔMBC
=>MN/MB=ME/MC
=>MN*MC=MB*ME
c)taxét tam giác aen và tam giác KBH có E=H =90 góc EBA chung => hai tam giác đồng dạng => EB.KB=BH.AB mà BH.AB=BC^2 => EB.KB=BC^2 mặt khác tan có BH.HA=CH^2 vậy biểu thức sẽ là BC^2-CH^2=HB^2
d)ta có vì tứ giác AEKH NỘI TIẾP đường tròn đường kính EK => tam giácEKH nội tiếp đưowngf tròn bán kính AK vậy để r lớp nhất => AK lớ nhất, vì tam giác AKH là tam giác vuông => góc AKH<90 vậy AKH là góc tù => AK<AC vậy AK lớn nhất khi bằng AK => E trùng với C thì AK bằng AC => để đường tròn ngoại tiếp tam giác EKH có bán kính lớn nhất thì E trùng với C
B O A C D K H E
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.