K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2023

Vì MN // BC theo Talet ta có:

\(\dfrac{y}{20}\) =  \(\dfrac{10}{15}\)  = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8;   y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)

 

5 tháng 10 2023

a) Do ABCD là hình vuôn nên: 

\(AB=BC=CD=AD\) 

Mà: \(\left\{{}\begin{matrix}AB=AM+MB\\BC=BN+NC\\CD=CP+PD\\AD=DQ+QA\end{matrix}\right.\) 

Lại có: \(AM=BN=CP=DQ\)

\(\Rightarrow MB=NC=PD=QA\left(dpcm\right)\) 

b) Xét \(\Delta QAM\) và \(\Delta NCP\) có:

\(\widehat{A}=\widehat{C}=90^o\left(gt\right)\)

\(AM=CP\left(gt\right)\)

\(QA=NC\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP\left(c.g.c\right)\) 

c) Xét các tam giác: \(\Delta QAM,\Delta NCP,\Delta PDQ,\Delta MBN\) ta có:

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\left(gt\right)\)

\(AM=BN=CP=DQ\left(gt\right)\)

\(MB=NC=PD=QA\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP=\Delta PDQ=\Delta MBN\left(c.g.c\right)\) 

\(\Rightarrow MQ=QP=PN=NM\) (các cạnh tương ứng) 

\(\Rightarrow MNPQ\) là hình thoi (1)

Xét tam giác QAM ta có:

\(\widehat{QMA}+\widehat{AQM}=180^o-90^o=90^o\) 

Mà: \(\Delta QAM=\Delta MBN\left(cmt\right)\)

\(\Rightarrow\widehat{BMN}=\widehat{AQM}\) (hai góc tương ứng) 

\(\Rightarrow\widehat{BMN}+\widehat{QMA}=90^o\)

Lại có: \(\widehat{BMN}+\widehat{QMA}+\widehat{NMQ}=180^o\)

\(\Rightarrow\widehat{NMQ}=180^o-90^o=90^o\) (2) 

Từ (1) và (2) ta có MNPQ là hình vuông 

22 tháng 11 2023

a) ����ABCD là hình vuông nên ��=��=��=��AB=BC=CD=DA

M��=��=��=��AM=BN=CP=DQ.

Trừ theo vế ta được ��−��=��−��=��−��=��−��ABAM=BCBN=CDCP=DADQ

Suy ra ��=��=��=��MB=NC=PD=QA

Xét tam giác QAM và tam giác NPC có:

góc A = góc C = 90 độ

AQ=NC(cmt)

AM=CP(gt)

=>Tam giác QAM= tam giác NPC(c.g.c)

c)=> NP = MQ ( hai cạnh tương ứng)

Chứng minh tương tự như phần b ta có: Tam giác QAM= tam giác PDQ và tam giác QAM= tam giác MBN

Khi đó: MQ=PQ, MN=MQ và góc AMQ= góc DQP

Mà góc AMQ+AQM=90 độ

=>góc DQP+ góc AQM= 90 độ

Do đó góc MQP = 90 độ

tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi

Lại có góc MQP = 90 độ nên là hình vuông

Vậy tứ giác MNPQ là hình vuông

 

 

 

22 tháng 4 2017

Giải:

a) Nối AC cắt EF tại O

∆ADC có EO // DC => AEEDAEED = AOOCAOOC (1)

∆ABC có OF // AB => AOOCAOOC = BFFCBFFC (2)

Từ 1 và 2 => AEEDAEED = BFFCBFFC

b) Từ AEEDAEED = BFFCBFFC => AEED+AEAEED+AE= BFFC+BFBFFC+BF

hay AEADAEAD=BFBCBFBC

c) Từ AEEDAEED = BFFCBFFC => AE+EDEDAE+EDED= BF+FCFCBF+FCFC

=> AD