\(\frac{DE}{DA}=\frac{BF}{BC}=\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

a) Xét tứ giác ABEC có  AB // CE; AC // BE .

Vậy nên ABEC  là hình bình hành. Suy ra AB = CE.

Do MN là đường trung bình hình thang ABCD nên ta có :

\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)

b) Do ABCD là hình thang cân nên ta có:

\(AD=BC;DB=AC\)

Xét tam giác ABD và tam giác BAC có:

Cạnh AB chung

AD = BC

BD = AC

\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)

Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.

c) Do ABEC là hình bình hành nên AC = BE

Lại có AC = BD nên BD = BE

Suy ra tam giác BDE cân tại B.

Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.

Lại có theo câu a thì MN = DE/2

Giả thiết lại cho MN = BH. Vậy nên BH = DE/2

Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.

Vậy BDE là tam giác vuông cân tại B. 

1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC    2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF 3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao...
Đọc tiếp

1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC    

2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF 

3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF

4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN

5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE   

0
1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE. a) Chứng minh BC//DE b) Biết BC= 3cm. Tính DE 2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF. 3) Cho hình thang ABCD. Một cát tuyến d song...
Đọc tiếp

1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE.

a) Chứng minh BC//DE

b) Biết BC= 3cm. Tính DE

2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF.

3) Cho hình thang ABCD. Một cát tuyến d song song với đáy DC cắt AD, BC lần lượt ở M,N. Chứng minh \(\frac{AM}{MD}\)=\(\frac{BN}{NC}\)

4) Cho hình thang ABCD có AB//CD. Gọi O là giao điểm hai đường chéoAC và BD và K là giao điểm của AD và BD. Kẻ đường thẳng KO cắt AB tại M, cắt CD tại N. CMR:

a) \(\frac{MA}{ND}\)=\(\frac{MB}{NC}\)

b) \(\frac{MA}{NC}\)=\(\frac{MB}{ND}\)

c) M là trung điểm của AB; N là trung điểm CD

1
19 tháng 1 2017

@Nguyễn Trần Thành Đạt giúp mình với

Nguyễn Quang DuyNguyễn Huy ThắngNguyễn Phương Trâm

ai giỏi toán giúp đi, mình học toán dở.

23 tháng 4 2020

120 nhe

6 tháng 5 2019

đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:

....

bn tự kẻ hình nha :)

a) Xét tg ACD, có: EI // DC

\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)

Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)

Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)

Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)

b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)

Xét tg ADB, EI // AB

=> EI/AB = DE/AD (2)

Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)

\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)

cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)

\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)