Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)
\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)
\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)
\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)
\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)
\(=\frac{2x+1}{x-3}\)
b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)
thay \(x=-\frac{3}{2}\) vào P tâ đc: \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)
c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)
\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)
\(\Leftrightarrow4x+2=x^2-3x\)
\(\Leftrightarrow x^2-7x-2=0\)
\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)
bạn tự giải nốt nhé!!
d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)
\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
bạn tự làm nốt nhé
a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)
\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)
b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)
a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a^3+b^3+c^3=-6.\)
b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)
c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)
a, \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\left(\frac{2-x}{x}\right)\)
\(=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=\frac{-4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{-4}{x+2}\)
b, Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow x=0;-\frac{1}{2}\)
Thay x = 0 vào biểu thức A ta được : \(\frac{-4}{0+2}=\frac{-4}{2}=-2\)
Thay x = -1/2 vào biểu thức A ta được : \(\frac{-4}{-\frac{1}{2}+2}=\frac{-4}{\frac{3}{2}}=-\frac{2}{3}\)
c, Ta có : \(\frac{-4}{x+2}=\frac{1}{2}\Leftrightarrow-8=x+2\Leftrightarrow x=-10\)
d, Ta có : \(\frac{-4}{x+2}\)hay \(x+2\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
a, ĐKXĐ : \(x-1\ne0\)
=> \(x\ne1\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2=1\)
=> \(x=3\left(TM\right)\)
- Thay x = 3 vào biểu thức P ta được :
\(P=\frac{3+2}{3-1}=\frac{5}{2}\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x=1\)
=> \(x=1\left(KTM\right)\)
Vậy giá trị của P là \(\frac{5}{2}\) .
a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)
Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)
Thay \(x=3\) vào P, ta có:
\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)
Vậy P = 5 tại x = 3.
b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)
\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)
a)\(A=\frac{x+1}{x^2+2x+1}:\left(\frac{1}{x^2-x}+\frac{1}{x-1}\right)\left(ĐK:x\ne0;x\ne1\right)\)
\(=\frac{x+1}{\left(x+1\right)^2}:\frac{1+x}{x\left(x-1\right)}\)
\(=\frac{1}{x+1}\cdot\frac{x\left(x+1\right)}{x+1}=\frac{x}{x+1}\)
b)Có: \(x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(loại\right)\\x=-2\end{array}\right.\)
Thay x=-2 vào A ta có
\(A=\frac{-2}{-2+1}=\frac{-2}{-1}=2\)
ĐK: \(x\ne2\).
a) \(P=\frac{x+1}{x-2}=\frac{x-2+3}{x-2}=1+\frac{3}{x-2}\)nguyên mà \(x\)nguyên nên \(x-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
suy ra \(x\in\left\{-1,1,3,5\right\}\).
Thử lại để \(P\)nguyên dương thì \(x\in\left\{-1,3,5\right\}\).
b) \(-x^2-x+2=0\)
\(\Leftrightarrow-x^2+x-2x+2=0\)
\(\Leftrightarrow\left(-x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\Rightarrow P=\frac{1}{4}\\x=1\Rightarrow P=-2\end{cases}}\)
x(x – 1)(x + 1) + x 2 – 1 = 0
ó x(x – 1)(x + 1) + ( x 2 – 1) = 0
ó x(x – 1)(x + 1) + (x – 1)(x + 1) = 0
ó (x + 1)(x – 1)(x + 1) = 0
ó ( x + 1 ) 2 (x – 1) = 0
Vậy x = -1 hoặc x = 1
Tổng các giá trị của x là 1 + (-1) = 0
Đáp án cần chọn là: D