\(\frac{x+1}{x-2}\)

a)Tìm giá trị nguyên của x để P có giá trị nguyên dương

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 7 2021

ĐK: \(x\ne2\).

a) \(P=\frac{x+1}{x-2}=\frac{x-2+3}{x-2}=1+\frac{3}{x-2}\)nguyên mà \(x\)nguyên nên \(x-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

suy ra \(x\in\left\{-1,1,3,5\right\}\).

Thử lại để \(P\)nguyên dương thì \(x\in\left\{-1,3,5\right\}\).

b) \(-x^2-x+2=0\)

\(\Leftrightarrow-x^2+x-2x+2=0\)

\(\Leftrightarrow\left(-x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\Rightarrow P=\frac{1}{4}\\x=1\Rightarrow P=-2\end{cases}}\)

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

13 tháng 1 2016

ĐKXĐ : x2-5x khác 0

<=>x.(x-5) khác 0

<=> x khác 0 và x khác 5

a)

\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)

<=>x-5=0

<=>x=5

Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0

b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)

\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)

c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)

Để phân thức trên nguyên thì : 1-5/x là số nguyên

=>5/x là số nguyên

=>x thuộc Ư(5)={1;-1;5;-5}

Mà x khác 5 nên: x={1;-1;-5}

Vậy x={1;-1;-5}