Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)\(\Leftrightarrow\left|x+1\right|-2\sqrt{x+1}=0\)
\(\Leftrightarrow\left|x+1\right|=2\sqrt{x+1}\)\(\Leftrightarrow\left|x+1\right|^2=\left(2\sqrt{x+1}\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x+4\)\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy ..............
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
\(a\text{) }pt\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}=0\text{ hoặc }\sqrt{x}-1=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=1\)
\(b\text{) }pt\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\sqrt{x}=0\text{ hoặc }2\sqrt{x}=3\)
\(\Leftrightarrow x=0\text{ hoặc }x=\frac{9}{4}\)
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
\(\sqrt{3000}.\sqrt{9000}+\sqrt{x}=30000\)
\(5196,15242271+\sqrt{x}=30000\)
\(\sqrt{x}=30000-5196,15242271\)
\(\sqrt{x}=24803,8475773\)
\(x=155,18971479225033\)
\(Vậy\)\(x=155,18971479225033\)
a) \(\sqrt{x}=4=>x=16\)
b) \(\left(x+1\right)^2=1=>x+1=\sqrt{1}=1\)
\(x+1=1=>x=0\)
c) \(\sqrt{x+1}=5=>x+1=25\)
a) \(\sqrt{x}=2\)
\(\Rightarrow x=2^2=4\)
b) \(\sqrt{x-1-5}=\sqrt{x-6}=0\)
\(\Rightarrow x-6=0^2=0\)
\(\Rightarrow x=6\)
các câu sau tương tự
\(\sqrt{300000}+\sqrt{123456789}+\sqrt{x}=1234567897\)
\(\Leftrightarrow\sqrt{123456789}+\sqrt{x}=123456241,277\)
\(\Leftrightarrow\sqrt{x}=123467352,389\)
\(\Leftrightarrow x=17,5244187271828182846\)
\(\sqrt{300000}+\sqrt{123456789}+\sqrt{x}=1234567897\)
\(\Leftrightarrow\sqrt{123456789}+\sqrt{x}=123456241,277\)
\(\Leftrightarrow\sqrt{x}=123467352,389\)
\(\Leftrightarrow x=123467352,389^2\)