Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x^2−2y^2=1→x^2−1=2y^2
+ Nếu x chia hết cho 3 thì x=3 (vì x là số nguyên tố). Thay vào ta có
32−1=2y^2=8→y^2=4→y=2
+ Nếu x không chia hết cho 3 thì x có dạng 3k+1 hoặc 3k+2 (k ∈ N)
Với x=3k+1 thì 2y^2=x^2−1=(x−1)(x+1)=(3k+1−1)(3k+1+1)=3k(3k+2)⋮3
Với x= 3k+2 thì 2y^2=x^2−1=(x−1)(x+1)=(3k+2−1)(3k+2+1)=(3k+1)(3k+3)=3(3k+1)(k+1)⋮3
Như vậy với mọi x không chia hết cho 3 thì x^2−1⋮3→2y2⋮3. Mà (2;3)= 1
Nên y^2⋮3. Do 3 là số nguyên tố nên y⋮3. Mà y là số nguyên tố nên y=3
Thay y=3 vào ta có:
x^2−1=2.3^2=18→x^2=19→x=19−−√ (không tm)
Vậy chỉ có 1 cặp số (x;y) thỏa mãn là x=3; y=2
NHỚ TK MK NHALưu Đức Mạnh
x2 + 2y2 + 3xy + 3x + 5y = 15
Û (x +y +z )(x + 2y +1)
đúng không???
Ta có : x2 - 4x + y2 + 2y + 5 = 0
<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0
<=> (x - 2)2 + (y + 1)2 = 0
Mà (x - 2)2 \(\ge0\forall x\)
(y + 1)2 \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)
\(x^2-2y^2=5\)
Từ PT đầu ta có \(x\)phải là số lẻ . Thay \(x=2k+1\left(k\in Z\right)\)vào PT đầu ta được :
\(\left(2k+1\right)^2-2y^2=5\)
\(\Rightarrow4k^2+4k+1-2y^2=5\)
\(\Rightarrow4k^2+4k-4=2y^2\)
\(\Rightarrow4\left(k^2+k-1\right)=2y^2\)
\(\Rightarrow2\left(k^2+k-1\right)=y^2\). Đặt \(y=2t\left(t\in Z\right)\), ta có :
\(2\left(k^2+k-1\right)=4t^2\)
\(\Leftrightarrow k\left(k+1\right)=2t^2+1\)
Dễ thấy : \(VT\)là số chẵn \(\forall x\in Z\)còn \(VP\)là số lẻ \(\forall t\in Z\)
\(\Rightarrow\)PT vô nghiệm . Số nghiệm nguyên dương bằng 0
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1)
(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)
\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)
Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)
Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.
Vậy phương trình trên không có nghiệm nguyên.