Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
=>x+3=4
hay x=1
c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow x^2+4x-12=0\)
=>(x+6)(x-2)=0
=>x=-6 hoặc x=2
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
\(\sqrt{12-\frac{3}{x^2}}+\sqrt{4x^2-\frac{3}{x^2}}=4x^2\)
\(pt\Leftrightarrow\sqrt{12-\frac{3}{x^2}}-3+\sqrt{4x^2-\frac{3}{x^2}}-1=4x^2-4\)
\(\Leftrightarrow\frac{12-\frac{3}{x^2}-9}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{4x^2-\frac{3}{x^2}-1}{\sqrt{4x^2-\frac{3}{x^2}}+1}=4\left(x^2-1\right)\)
\(\Leftrightarrow\frac{\frac{3\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(x-1\right)\left(x+1\right)\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\right)=0\)
Pt \(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4>0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)