Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
\(x^2-2x+4=3\sqrt{3x^2-6x+4}\)
\(< =>\left(x^2-2x+1\right)-3\sqrt{3x^2-6x+4}=0\)
Đến đây bạn chỉ cần xét th = 0 với khác 0 thôi
\(\Leftrightarrow x^4+2x^3+x^2+x^2+2x+1+\sqrt{x^2+2x+10}=3\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+1\right)^2+\sqrt{\left(x+1\right)^2+9}=3\)
Do \(\left\{{}\begin{matrix}\left(x^2+x\right)^2\ge0\\\left(x+1\right)^2\ge0\\\sqrt{\left(x+1\right)^2+9}\ge3\end{matrix}\right.\)
\(\Rightarrow VT\ge3\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
1.
\(\text{ĐK: }x\ge\frac{1}{2}\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)
\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)