Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được
VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)
c/ = \(\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{25+2.3.5.\sqrt{2}+18}\)
\(=5+3\sqrt{2}\)
d/ \(=\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
\(=\sqrt{13+6\sqrt{4+2\sqrt{2}-1}}\)
\(=\sqrt{13+6\left(\sqrt{3}+1\right)}\)
\(=\sqrt{19+6\sqrt{2}}\)
\(=3\sqrt{2}+1\)
\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)
\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)
\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)
\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)
\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)
\(=\)\(3\sqrt{6}+9\)
Chúc bạn học tốt ~
\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)
\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) )
\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)
\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) )
\(=\)\(1\)
Chúc bạn học tốt ~
PS : mới lớp 8 sai thì thông cảm >.<
\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)
\(ĐKXĐ:x\ge2\)
\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)
\(\frac{11}{5}\sqrt{x-2}=11\)
\(\sqrt{x-2}=5\)
\(x-2=25\)
\(x=27\left(TM\right)\)
\(b,\sqrt{x^2-2x+1}=3x-2\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{\left(x-1\right)^2}=3x-2\)
\(\left|x-1\right|=3x-2\)
\(x-1=3x-2\)
\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm
b, đk : x >= 2/3
|x - 1| = 3x - 2
=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x
=> 2x = 1 hoặc 4x = 3
=> x = 1/2 (ktm) hoặc x = 3/4 (tm)
a) \(2\sqrt{50}-3\sqrt{32}-\sqrt{162}+5\sqrt{98}\)
=\(2.5\sqrt{2}-3.4\sqrt{2}-9\sqrt{2}+5.7\sqrt{2}\)
= \(10\sqrt{2}-12\sqrt{2}-9\sqrt{2}+35\sqrt{2}\)
= \(24\sqrt{2}\)
b) \(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)
= \(\sqrt{7+2\sqrt{7}+1}+\sqrt{7-4\sqrt{7}+4}\)
= \(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-2\right)^2}\)
= \(\sqrt{7}+1+\sqrt{7}-2\)
= \(2\sqrt{7}-1\)
c) \(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
= \(2\sqrt{5}+6-2\sqrt{5}-3\)
= 3
\(\sqrt{50-\sqrt{18}}=\sqrt{50-3\sqrt{2}}\)
\(\sqrt{50-\sqrt{18}}=\sqrt{5\sqrt{2}-3\sqrt{2}}\)
\(=\sqrt{\left(5-3\right)\sqrt{2}}=\sqrt{2\sqrt{2}}\)