Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh bằng phương pháp phản chứng .
Giả sử có tồn tại một số hữu tỉ \(\frac{x}{y}\left(x;y\in Z;\left(x;y\right)=1\right)\) sao cho \(\frac{x}{y}=\sqrt{2}\)
\(\Rightarrow\frac{x^2}{y^2}=2\)
\(\Rightarrow\frac{x^2}{2}=y^2\)
Mà y là số nguyen => y^2 là số nguyên
\(\Rightarrow x^2⋮2\)
\(\Rightarrow x^2⋮4\)
Mặt khác \(x^2=2y^2\)
=> \(2y^2⋮4\)
\(\Rightarrow y^2⋮4\)
=> \(ƯC_{\left(x;y\right)}=4\)
Trái với giả thiết
=> Không tồn tại số hữu tỉ nào mà bình phương lên bằng 2
\(x^2+5=a^2;x^2-5=b^2\\ \Rightarrow x^2=a^2-5=b^2+5\)
\(\Rightarrow a^2-b^2=5+5\\ \Rightarrow\left(a-b\right)\left(a+b\right)=10=1.10=2.5\)
Thế từng trường hợp vào rồi tính
Số đó là: \(\frac{41}{12}\)
Thật vậy:
\(\left(\frac{41}{12}\right)^2+5=\frac{1681}{144}+5=\frac{2401}{144}=\left(\frac{49}{21}\right)^2\)
\(\left(\frac{41}{12}\right)^2-5=\frac{1681}{144}-5=\frac{961}{144}=\left(\frac{31}{12}\right)^2\)
- Viết hai số hữu tỉ dưới dạng hai phân số có cùng một mẫu dương (bằng cách quy đồng mẫu của chúng)
- Cộng, trừ hai tử số, mẫu chung giữ nguyên;
- Rút gọn kết quả (nếu có thể)
- HT
- Nhớ k nhen
Câu hỏi của Nguyen Thao Quyen - Toán lớp 7 - Học toán với OnlineMath
x=41/12
vi:(42/12)^2+5=1681/144+5=2401=(49/12)^2
(41/12)^2-5=1681/144-5=961/144=(31/12)^2
ung ho mk nha
giả sử \(\sqrt{2}\) là một số hữu tỉ như em nói ta có :
\(\sqrt{2}\) = \(\dfrac{a}{b}\) trong đó a,b ϵ N , b # 0 (a,b) =1
\(\sqrt{2}\) = \(\dfrac{a}{b}\)
⇔ (\(\sqrt{2}\) )\(^2\) = (\(\dfrac{a}{b}\))2
⇔ 2 = \(\dfrac{a^2}{b^2}\)
⇔2.b2 = a2
⇔ a2 ⋮ 2 ⇔ a ⋮ 2 (1)
vì hai là số nguyên tố nên
a2 ⋮ 2 ⇔ a2 ⋮ 4 ( t/c của một số chính phương )
⇔ 2.b2 ⋮ 4 ⇔ b2 ⋮ 2 ⇔ b ⋮ 2 (2)
kết hợp (1) và(2) ta có:
\(\left\{{}\begin{matrix}a⋮2\\b⋮2\end{matrix}\right.\)
⇔ (a,b) = 2 trái với giả sử (a,b) = 1
vậy điều giả sử là sai chứng tỏ \(\sqrt{2}\) không thể là số hữu tỉ nên \(\sqrt{2}\) là một số hữu tỉ
chúc rm thi tốt trong kì thi giữ kì 1 đang diễn ra em nhé