K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) ⋮ 2 vì n(n + 1) là tích của hai số tự nhiên liên tiếp.

Mà 1 không chia hết cho 2

Do đó n(n + 1) + 1 không chia hết cho 2.

3 tháng 10 2019

Ta có

 \(A=n^2+n+2n+1\) 

\(A=n\left(n+1\right)+2n+1\) 

ta thấy\(n\left(n+1\right)\) và \(2n\)đề chia hết cho 2 nên \(A=n\left(n+1\right)+2n+1\)ko chia hết cho 2

Vậy \(A=n^2+3n+1\) ko chia hết cho 2

      

12 tháng 10 2017

Ta có: \(n^2+n+6=n\left(n+1\right)+6\)

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9

Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5

Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5

Suy ra n(n+1) + 6 không chia hết cho 5

hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

Nhớ k cho mình nhé! Thank you!!!

3 tháng 12 2017

Ta có: n
2
+ n + 6 = n n + 1 + 6
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9
Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5
Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5
Suy ra n(n+1) + 6 không chia hết cho 5
hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

chúc bn hok tốt @_@

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

8 tháng 7 2017

n.(n+1).(n+2) chia hết cho 6 khi tích trên đồng thời chia hết cho 2 và 3

+ Nếu n chia hết cho 2 thì tích chia hết cho 2

+ Nếu n chia 2 dư 1 thì n+1 chia hết cho 2 nên tích chia hết cho 2

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chai hết cho 3 nên tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 nên tích chia hết cho 3

=> tích trên đồng thời chia hết cho 2 và 3 với mọi n nên tích trên chia hết cho 6 với mọi n

15 tháng 11 2015

a)aaaaa=a*111111=a*15873*7(chia hết cho 7)

b)abcabc=abc*1001=abc*91*11(chia hết cho 11)

c)aaa=a*111=a*3*37(chia hết cho 37)

d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)

20 tháng 11 2017

Ta co:7 ^4n -1=(7 ^4 )^ n -1=2401 ^n -1=..........1-1=...........0 chia hết cho 5 =>dpcm

7 tháng 6 2017

Cho a, b N* ; a > 2 ; b . 2

Chứng tỏ rằng a + b < a * b

             Giải

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 

Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.