K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

n.(n+1).(n+2) chia hết cho 6 khi tích trên đồng thời chia hết cho 2 và 3

+ Nếu n chia hết cho 2 thì tích chia hết cho 2

+ Nếu n chia 2 dư 1 thì n+1 chia hết cho 2 nên tích chia hết cho 2

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chai hết cho 3 nên tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 nên tích chia hết cho 3

=> tích trên đồng thời chia hết cho 2 và 3 với mọi n nên tích trên chia hết cho 6 với mọi n

31 tháng 10 2024

n là số tự nhiên nên n có dạng: n = 3k; n = 3k +1; n = 3k +2 (k \(\in\) N)

Vơi n = 3k ta có: n(n + 1).(n + 5) = 3k(3k+1).(3k+5)⋮ 3

Nếu n = 3k + 1 ta có:

n(n+1)(n+5)=(3k + 1).(3k+ 1+1).(3k + 1+ 5) = (3k + 1)(3k+2)(3k+6) ⋮ 3

Nếu n =3k + 2 ta có: 

n(3n  +2 + 1).(3n + 2 + 5) = n(3n+3)(3n+7) ⋮ 3 

Tư những lập luận và phân tích trên ta có: n(n+1)(n+5)⋮ 3 ∀ n \(\in\) N

 

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

12 tháng 10 2017

Ta có: \(n^2+n+6=n\left(n+1\right)+6\)

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9

Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5

Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5

Suy ra n(n+1) + 6 không chia hết cho 5

hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

Nhớ k cho mình nhé! Thank you!!!

3 tháng 12 2017

Ta có: n
2
+ n + 6 = n n + 1 + 6
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) không có chữ số tận cùng là 4 hoặc 9
Vì n(n+1) không có chữ số tận cùng là 4 hoặc 9 nên n(n+1) + 6 không có chữ số tận cùng là 0 hoặc 5
Mà các chữ số khác chữ số tận cùng 0 hoặc 5 thì không chia hết cho 5
Suy ra n(n+1) + 6 không chia hết cho 5
hay n^2 + n + 6 không chia hết cho 5 với mọi số tự nhiên n ( đpcm )

chúc bn hok tốt @_@

8 tháng 12 2016

\(n^2\)- n = nn - n.1 =  n . ( n - 1)

Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn

\(\Rightarrow\)  n chia hết cho 2 hoặc (n-1) chia hêt cho 2

\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

23 tháng 11 2020

a,xét n chẵn hiển nhiên A ko chia hết cho 2

n lẻ thì n^2 lẻ n lẻ

->A lẻ -> A ko chia hết cho 2

b,n^2 có tận cùng là:0,1,4,5,6,9

->n^2+n có tận cùng:0,2,8

->n^2+n+1 có tận cùng:1,3,9  ko chia hết cho 5

11 tháng 10 2016

chan qua a!

ai kb voi mk ko

chan qua !

chuc bn hoc gioi!

nhae

24 tháng 7 2018

+A=60n+45=15(4n+3) chia hết cho 15

+A=60n+45=(60n+30)+15=30(2n+1)+15

30(2n+1) chia hết cho 30 nhưng 15 không chia hết chgo 30 nên A không chia hết cho 30