K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ 

29 tháng 11 2016

\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)

\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)

29 tháng 11 2016

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)

\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

1 tháng 4 2021

Với \(x\ne1\)ta có 

\(P=\left(\frac{4}{x-1}-\frac{7x+5}{x^3-1}\right):\left(1-\frac{x-4}{x^2+x+1}\right)\)

\(=\left[\frac{4x^2+4x+4-7x-5}{\left(x-1\right)\left(x^2+x+1\right)}\right]:\left(\frac{x^2+x+1-x-4}{x^2+x+1}\right)\)

\(=\frac{4x^2-3x-1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2-3}{x^2+x+1}=\frac{4x+1}{x^2-3}\)

15 tháng 11 2019

Giups mk

15 tháng 11 2019

Ai giúp mk với

27 tháng 11 2015

\(N=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)

\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\)

\(=\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)

1 tháng 1 2021

\(\left(\frac{x^2+x+1}{x^3-1}-\frac{x-1}{x^2+2x+1}+\frac{1}{x^2-1}\right)\div\frac{x-1}{x+1}\)

\(=\left(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x-1}{\left(x+1\right)^2}+\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{x-1}{x+1}\)

\(=\left(\frac{\left(x+1\right)^2\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}\right)\)\(\div\frac{x-1}{x+1}\)

 
3 tháng 8 2016

\(B=\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\left(ĐK:x\ne\pm3\right)\)

\(=\frac{2x\left(x+3\right)-\left(x-1\right)\left(x-3\right)-x^2-1}{x^2-9}:\frac{x+3-x+1}{x+3}\)

\(=\frac{2x^2+6x-x^2+3x+x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}\)

\(=\frac{10x-4}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}=\frac{10x-4}{4\left(x-3\right)}\)

3 tháng 8 2016

\(B=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(=\left[\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+3-x+1}{x+3}\right)\)
\(=\left(\frac{2x^2+6x-x^2+3x-x+3-x^2-1}{\left(x+3\right)\left(x-3\right)}\right):\frac{4}{x+3}\)
\(=\frac{8x-1}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{4}\)\(=\frac{8x-1}{4\left(x-3\right)}\)


 

3 tháng 7 2018

\(\frac{3x+1}{\left(x+1\right)^2}-\frac{1}{x+1}+\frac{x+3}{1-x^2}\)

\(=\frac{\left(3x+1\right).\left(x+1\right)}{\left(x+1\right).\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x+3\right).\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{3x^2+3x+x+1-x^2+2x-1-x^2+x-3x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x^2+x+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2+\left(x+1\right)}\)

\(=\frac{\left(x+3\right)}{\left(x-1\right)^2}\)

3 tháng 7 2018

\(\frac{3x+1}{\left(x-1\right)^2}\)\(-\frac{1}{x+1}\)\(+\frac{x+3}{1-x^2}\)

\(=\frac{3x+1}{\left(x-1\right)^2}\)\(-\frac{1}{x+1}\)\(-\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)\(-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)\(-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{3x^2+3x+x+1-x^2+2x-1-x^2+x-3x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x\left(x+1\right)+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

\(=\frac{x+3}{\left(x-1\right)^2}\)