Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(B=\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\left(ĐK:x\ne\pm3\right)\)
\(=\frac{2x\left(x+3\right)-\left(x-1\right)\left(x-3\right)-x^2-1}{x^2-9}:\frac{x+3-x+1}{x+3}\)
\(=\frac{2x^2+6x-x^2+3x+x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}\)
\(=\frac{10x-4}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{4}=\frac{10x-4}{4\left(x-3\right)}\)
\(B=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(=\left[\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+3-x+1}{x+3}\right)\)
\(=\left(\frac{2x^2+6x-x^2+3x-x+3-x^2-1}{\left(x+3\right)\left(x-3\right)}\right):\frac{4}{x+3}\)
\(=\frac{8x-1}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{4}\)\(=\frac{8x-1}{4\left(x-3\right)}\)
a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)
Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
\(\frac{3x+1}{\left(x+1\right)^2}-\frac{1}{x+1}+\frac{x+3}{1-x^2}\)
\(=\frac{\left(3x+1\right).\left(x+1\right)}{\left(x+1\right).\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x+3\right).\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3x^2+3x+x+1-x^2+2x-1-x^2+x-3x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x^2+x+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2+\left(x+1\right)}\)
\(=\frac{\left(x+3\right)}{\left(x-1\right)^2}\)
\(\frac{3x+1}{\left(x-1\right)^2}\)\(-\frac{1}{x+1}\)\(+\frac{x+3}{1-x^2}\)
\(=\frac{3x+1}{\left(x-1\right)^2}\)\(-\frac{1}{x+1}\)\(-\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)\(-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)\(-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{3x^2+3x+x+1-x^2+2x-1-x^2+x-3x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x\left(x+1\right)+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\frac{x+3}{\left(x-1\right)^2}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
\(\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right)\div\left(1-\frac{x}{x+2}\right)\)
\(=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}+\frac{1\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right)\div\left(1-\frac{x}{x+2}\right)\)
\(=\frac{x+\left(x-2\right)-2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\div\left(1-\frac{x}{x+2}\right)\)
\(=\frac{x-2}{1}\div\left(1-\frac{x}{x+2}\right)\)
\(=\frac{x-2}{1}\div\left(\frac{x+2}{x+2}-\frac{x}{x+2}\right)\)
\(=\frac{x-2}{1}\div\left(\frac{x+2-x}{x+2}\right)=\frac{x-2}{1}\div\frac{2}{x+2}\)
\(=\frac{x-2}{1}\times\frac{x+2}{2}=\frac{\left(x-2\right)\left(x+2\right)}{1.2}=\frac{x^2-2^2}{2}=\frac{x^2-2}{1}=x^2-2\)
(Sai thì thôi)
#Học tốt!!!
~NTTH~
a,\(P=\frac{x^2+x}{x^2-2x+1}\div\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x^2+x}{\left(x-1\right)^2}\div\frac{x+1}{x\left(x-1\right)}=\frac{x^2+x}{\left(x-1\right)^2}\times\frac{x\left(x-1\right)}{x+1}\)
\(=\frac{x^2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2}{x-1}\)
b,a,Để \(P\le1\Rightarrow\frac{x^2}{x-1}\le1\)
\(\Leftrightarrow\frac{x^2}{x-1}-1\le0\)
\(\Leftrightarrow\frac{x^2-x+1}{x-1}\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Leftrightarrow x\le1\)
\(N=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\)
\(=\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)