Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)
Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
Để A nhận giá trị nguyên thì x-3 chia hết chi x+1
=> (x+1)-4 chia hết chi x+1
=> 4 chia hết cho x+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
ĐCĐK | tm | tm | tm | ktm | ktm | tm |
Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên
c) I3x-1I=5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)
Đên đây thay vào rồi tính nhé
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x-3}{x+1}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow x-3⋮x+1\)
\(\Leftrightarrow x+1-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)
Mà \(x\ne0;x\ne1\)
\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
c) Khi \(\left|3x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên
Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{-1}{x+2}\)
b) Khi \(\left|x\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)
c) Để P = 7
\(\Leftrightarrow-\frac{1}{x+2}=7\)
\(\Leftrightarrow7\left(x+2\right)=-1\)
\(\Leftrightarrow7x+14=-1\)
\(\Leftrightarrow7x=-15\)
\(\Leftrightarrow x=-\frac{15}{7}\)
Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)
d) Để \(P\inℤ\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)
\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)
b) Thay x = -3 vào A, ta được :
\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)
\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)
\(\Leftrightarrow A=-6\)
c) Để A > -1
\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)
\(\Leftrightarrow2x^2-2x< x^2+2x+1\)
\(\Leftrightarrow x^2-4x-1< 0\)
\(\Leftrightarrow\left(x-2\right)^2-5< 0\)
\(\Leftrightarrow\left(x-2\right)^2< 5\)
Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)