Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = x2 - 3x + 2. Hệ số: a = 1, b = - 3, c = 2.
- Hoành độ đỉnh x1 =
- Tung độ đỉnh y1 =
Vậy đỉnh parabol là .
- Giao điểm của parabol với trục tung là A(0; 2).
- Hoành độ giao điểm của parabol với trục hoành là nghiệm của phương trình:
x2 - 3x + 2 = 0 ⇔ x1 = , x1 = .
Vậy các giao điểm của parabol với trục hoành là B(1; 0) và C(2; 0).
b) Đỉnh I(1; 1). Giao điểm với trục tung A(0;- 3).
Phương trình - 2x2 + 4x - 3 = 0 vô nghiệm. Không có giao điểm cuả parabol với trục hoành.
c) Đỉnh I(1;- 1). Các giao điểm với hai trục tọa độ: A(0; 0), B(2; 0).
d) Đỉnh I(0; 4). Các giao điểm với hai trục tọa độ: A(0; 4), B(- 2; 0), C(2; 0).
\(y=x^2+bx+c\left(1\right)\)
(1) Đi qua điểm A(2;-3) nên: 4 + 2b + c = -3
(1) Có đỉnh I (1;-4) nên ta có \(-\dfrac{b}{2a}=1\Rightarrow b=-2a\)
Ta có hệ phương trình :
\(\left\{{}\begin{matrix}b=-2a\\4+2b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\2b+c=-7\end{matrix}\right.\left\{{}\begin{matrix}b=-2\\c=-3\end{matrix}\right.\)
\(\Rightarrow\) Phương trình có dạng: \(y=x^2-2x-3\)
a.y= -x2 và y=x -2
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=x-2\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào pt 1: y= -x2
\(\Leftrightarrow y=-\left(2\right)^2\)
\(\Leftrightarrow y=-4\)
Thay x=-1 vào pt 2: y=x-2
\(\Leftrightarrow y=-1-2\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (2;-4) và (-1;-3)
b.\(y=-\frac{1}{2}x^2-2x-4\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-\frac{1}{2}x^2-2x-4=0\)
\(\Leftrightarrow x\left(\frac{1}{2}x-2\right)=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{2}x-2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)
Thay x=4 vào pt:y=\(-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(4\right)^2-2\times4-4\)
\(\Leftrightarrow y=-20\)
Thay x=12 vào pt:\(y=-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(12\right)^2-2\times12-4\)
\(\Leftrightarrow y=-100\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (4;-20) và (12;-100)
c.y=x2 +6x +4 và y=-x + 1
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2+6x+4=-x+1\)
\(\Leftrightarrow x^2+7x+3=0\)
\(\Leftrightarrow x\left(x-7\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x-7=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Thy x=-3 vào pt (1):y=x2 +6x +4
\(\Leftrightarrow y=\left(-3\right)^2+6\times\left(-3\right)+4\)
\(\Leftrightarrow y=-5\)
Thay x=4 vào pt (2):y=-x + 1
\(\Leftrightarrow y=-\left(4\right)+1\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (-3;-5) và (4;-3)
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.
\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)
(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)
\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)
Vậy parabol đó là \(y = {x^2} - 5x + 6\)
b) Vẽ parabol \(y = {x^2} - 5x + 6\)
+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)
+ Giao với Oy tại điểm \((0;6)\)
+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)
+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)
b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)
c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)
Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)
Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Cách 2:
\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)
Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)
Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)
Lời giải
a)
a.1) Trục đối xứng y =1/4
a.2) giao trục tung A(0,-2)
a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)
b)
b.1) Trục đối xứng y =-1/4
b.2) giao trục tung A(0,2)
a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)
4A
5. \(\left\{{}\begin{matrix}a+b+2=5\\4a-2b+2=8\end{matrix}\right.\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x^2+x+2\)
6. \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\24a-16a^2=16a\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
7. \(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) \(\Rightarrow y=x^2-x-1\)
8.
a/ \(AM=\sqrt{2}\)
b/ \(AM=\sqrt{10}\)
c/ Không thuộc đồ thị
d/ Không thuộc đồ thị
Đáp án A đúng
\(a\ne0\)
a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)
\(\Rightarrow y=3x^2-36x+96\)
b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
* Parabol (P): y = x 2 + 4 x có đỉnh là I(-2; -4)
* Phương án A có đỉnh (-2; -8).
* Phương án B có đỉnh (2; 5)
*Phương án C có đỉnh ( -2; -3)
* Phương án D có đỉnh (-2; -4)
Chọn D.