Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
a)
a.1) Trục đối xứng y =1/4
a.2) giao trục tung A(0,-2)
a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)
b)
b.1) Trục đối xứng y =-1/4
b.2) giao trục tung A(0,2)
a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)
Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).
y = x2 – 3x + 2 có a = 1 ; b = –3 ; c = 2 ; Δ = b2 – 4ac = (–3)2 – 4.2.1 = 1.
+ Đỉnh của Parabol là
+ Khi x = 0 thì y = 2. Vậy giao điểm với trục tung là A(0 ; 2).
+ Khi y = 0 thì x2 – 3x + 2 = 0. Phương trình có hai nghiệm x = 2 hoặc x = 1.
Vậy giao điểm với trục hoành là B(2 ; 0) và C(1 ; 0).
a: Trục đối xứng là x=-(-1)/4=1/4
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot2\cdot\left(-2\right)}{4\cdot2}=-\dfrac{17}{8}\end{matrix}\right.\)
Thay y=0 vào (P), ta được:
2x^2-x-2=0
=>\(x=\dfrac{1\pm\sqrt{17}}{4}\)
thay x=0 vào (P), ta được:
y=2*0^2-0-2=-2
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-6\right)}{2\cdot\left(-3\right)}=\dfrac{6}{-6}=-1\\y=-\dfrac{\left(-6\right)^2-4\cdot\left(-3\right)\cdot4}{4\cdot\left(-3\right)}=7\end{matrix}\right.\)
=>Trục đối xứng là x=-1
Thay y=0 vào (P), ta được:
-3x^2-6x+4=0
=>3x^2+6x-4=0
=>\(x=\dfrac{-3\pm\sqrt{21}}{3}\)
Thay x=0 vào (P), ta được:
y=-3*0^2-6*0+4=4
c: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-1\right)}{2\cdot\left(-2\right)}=\dfrac{1}{-4}=\dfrac{-1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot\left(-2\right)\cdot2}{4\cdot\left(-2\right)}=\dfrac{17}{8}\end{matrix}\right.\)
=>Trục đối xứng là x=-1/4
Thay y=0 vào (P), ta được:
-2x^2-x+2=0
=>2x^2+x-2=0
=>\(x=\dfrac{-1\pm\sqrt{17}}{4}\)
Thay x=0 vào (P), ta được:
y=-2*0^2-0+2=2
y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.
+ Đỉnh của Parabol là (1 ; –1).
+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).
+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.
Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).
a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 - 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
b)
4x2 + 9y2 = 1 <=> + = 1
a2= => a = => độ dài trục lớn 2a = 1
b2 = => b = => độ dài trục nhỏ 2b =
c2 = a2 – b2
= - = => c =
F1(- ; 0) và F2( ; 0)
A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).
c) Chia 2 vế của phương trình cho 36 ta được :
=> + = 1
Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)
=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).
a) y = x2 - 3x + 2. Hệ số: a = 1, b = - 3, c = 2.
Vậy đỉnh parabol là .
x2 - 3x + 2 = 0 ⇔ x1 = , x1 = .
Vậy các giao điểm của parabol với trục hoành là B(1; 0) và C(2; 0).
b) Đỉnh I(1; 1). Giao điểm với trục tung A(0;- 3).
Phương trình - 2x2 + 4x - 3 = 0 vô nghiệm. Không có giao điểm cuả parabol với trục hoành.
c) Đỉnh I(1;- 1). Các giao điểm với hai trục tọa độ: A(0; 0), B(2; 0).
d) Đỉnh I(0; 4). Các giao điểm với hai trục tọa độ: A(0; 4), B(- 2; 0), C(2; 0).