Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có 3 12 cách.
* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách: − C 3 2 .2 12
(Chọn ra hai toa có C 3 2 cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).
Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này: + C 3 1 .1 12
* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156 cách.
Do đó chọn đáp án B.
Bài toán tổng quát: Có bao nhiêu cahcs xếp q hành khách vào n toa tàu khác nhau sao cho toa tàu nào cũng có khách? (hay chính là bài toán chia quà: Có bao nhiêu cách chia q món quà khác nhau cho n bạn sao cho bạn nào cũng có quà?)
Ở bài toán trên, ta có:
3 12 − C 3 2 .2 12 + C 3 1 .1 12 = C 3 0 3 − 0 12 − C 3 1 3 − 1 12 + C 3 2 3 − 2 12 − C 3 3 3 − 3 12
Lập luận tương tự như bài toán trên ta có số cách xếp (cách chia) là:
C n 0 n − 0 q − C n 1 n − 1 q + C n 2 n − 2 q − C n 3 n − 3 q + ... = ∑ k = 0 n − 1 k C n k n − k q
Bài toán này khác với bài toán chia kẹo Euler: Có bao nhiêu cách chia q chiếc kẹo giống nhau cho n em bé sao cho em nào cũng có kẹo?
Đề bài sai bạn
Tổng cộng chỉ có 3 hộp hư, thì dù lấy thế nào cũng không thể nhiều hơn 3 hộp hư nên xác suất luôn bằng 1
Bài 1: Thực hiện phép tính
a)136 - (2 . 52 + 23 . 3)
= 136 - (104 + 69)
= 136 - 173
= -37
b) (-243) + (-12) + (+243) + (-38) + (10)
= [(-243) + (+243)] + (-12) + (-38) + (10)
= 0 + (-40)
= -40
Bài 2 : Tìm x ∈ N, biết:
a) 6 . (x-81) = 54
⇒ x - 81 = 54 : 6
⇒ x - 81 = 9
x = 81 + 9
x = 90
Vậy : x = 90
b) 18 - (x-4) = 32
⇒ x - 4 = 18 - 32
⇒ x - 4 = -14
x = -14 + 4
x = -10
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0