K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Đáp án B

*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có 3 12 cách.

* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách:  − C 3 2 .2 12

(Chọn ra hai toa có C 3 2  cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).

Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này:  + C 3 1 .1 12

* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156  cách.

Do đó chọn đáp án B.

Bài toán tổng quát: Có bao nhiêu cahcs xếp q hành khách vào n toa tàu khác nhau sao cho toa tàu nào cũng có khách? (hay chính là bài toán chia quà: Có bao nhiêu cách chia q món quà khác nhau cho n bạn sao cho bạn nào cũng có quà?)

Ở bài toán trên, ta có:

3 12 − C 3 2 .2 12 + C 3 1 .1 12 = C 3 0 3 − 0 12 − C 3 1 3 − 1 12 + C 3 2 3 − 2 12 − C 3 3 3 − 3 12

Lập luận tương tự như bài toán trên ta có số cách xếp (cách chia) là:

C n 0 n − 0 q − C n 1 n − 1 q + C n 2 n − 2 q − C n 3 n − 3 q + ... = ∑ k = 0 n − 1 k C n k n − k q  

Bài toán này khác với bài toán chia kẹo Euler: Có bao nhiêu cách chia q chiếc kẹo giống nhau cho n em bé sao cho em nào cũng có kẹo?

6 tháng 2 2019

NV
17 tháng 9 2021

1.

Gọi \(M\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y;-3-z\right)\\\overrightarrow{MB}=\left(-2-x;-y;2-z\right)\end{matrix}\right.\)

\(2\overrightarrow{MA}=\overrightarrow{MB}\Rightarrow\left\{{}\begin{matrix}2-2x=-2-x\\4-2y=-y\\-6-2z=2-z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\\z=-8\end{matrix}\right.\) \(\Rightarrow M\left(4;4;-8\right)\)

NV
17 tháng 9 2021

2.

Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;2;-4\right)\\\overrightarrow{AC}=\left(0;1;c-2\right)\end{matrix}\right.\)

Tam giác ABC vuông tại A \(\Rightarrow AB\perp AC\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow-2.0+2.1-4\left(c-2\right)=0\)

\(\Rightarrow c=\dfrac{5}{2}\)

Vậy \(C\left(1;0;\dfrac{5}{2}\right)\)

9 tháng 6 2016

mf (a) đi wa O(0;0;0) có VTPT :na=ud =(1,2,3) →pt :x+2y+3z=0

M ϵ d → M( t; -1+2t; -2+3t)      d(M; (p))=2= \(\frac{5-t}{\sqrt{5}}\)   tìm đk : t=5+2\(\sqrt{5}\)  và t=5-2\(\sqrt{5}\)    →tìm đk 2 tọa độ M

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x  trong đó luôn tìm được 1 đồng tiền bị lỗi . bài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại...
Đọc tiếp

Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   

2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

 

trong đó luôn tìm được 1 đồng tiền bị lỗi .

 

cleardot.gifbài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần cân thăng bằng tìm gia đồng bị lỗi. Lời giải:

Ta đánh đấu từng đồng bằng các số từ 1 đến 13 , ta chia thành 3 nhóm nhóm A là nhóm có số đồng từ số 1 đến số 4 , nhóm B có số đồng từ 5 đến 8 , nhóm C có số đồng từ 9 đến 13 , lần cân thứ nhất: ta cho nhóm A cân với nhóm B nếu cân thằng bằng thì nhóm C sẽ có 1 đồng bị lỗi , ta cho đồng 12 , 13 gia ngoài, cho thêm đồng số 1 vào cùng với đồng số 9 cho lên cân vơi đồng số 11 và đồng số 10 nếu cân thăng bằng thì đồng số 1 2 và đồng số 13 có 1 đồng bị lỗi . Ta cân 1 trong 2 đồng trên vơi bất kể đồng còn lại nào thì có thể tìm gia được đồng bị lỗi, nếu cân lệnh ta gi nhớ xem nhóm nào nặng hơn , vậy là trong 3 đồng 9, 10, 11 có 1 đồng bị lỗi , lần cân thứ 3 ta cho đồng số 10 cân với đồng số 11 nếu cân thăng bằng thì đồng số 9 bị lỗi còn cân lệch thì đồng số 11 và 10 có 1 đồng bị lỗi ta lấy 2 đồng cân vơi nhau và để ý xem đồng nào cùng nặng hoặc cùng nhẹ như nhóm này ở lần cân số 2 là đồng bị lỗi.
Quay chở lại trường hợp cân nhóm A với Nhóm B nếu cân không thăng bằng ta gi nhớ xem nhóm nào nặng hơn. Ta bỏ đồng số 4 của nhóm A và đồng số 7,8 của nhóm B gia ngoài. Cho đồng số 3 sang nhóm B đồng số 6 sang nhóm A . Vậy nhóm A có đồng 1 ,2 ,6 nhóm B có đồng 3 ,5 và đồng số 9 cho thêm vào không bị lỗi. Nếu cân thăng bằng thì 3 đồng 4 ,7,8 có đồng lỗi, ta lấy đồng 7 cân với đồng 8 cũng suy luận như nhóm C là tìm đc đồng bị lỗi. Nếu cân đảo chiều thì đồng 3 hoặc đồng 6 bị lỗi, còn lần cân còn lại tìm gia được đồng nào bị lỗi. Nếu cân vẫn lệch như lần cân số 1 thì 3 đồng 1,2,5 có đồng bị lỗi ta cũng cân đồng số 1 với đồng số 2 như cách cân ở nhóm C có thể tìm gia đồng bị lỗi.

từ dữ niệu bài toán ta có :

 Với 3 lần cân ta cân được tối đa 13 đồng tiền , 

 Với 4 lần cân ta cân được tối đa là 39 đồng tiền ( 1 tuần trc mình nhầm to cái này) vì đơn giản là 39 đông chia thành 13 cân vơi13 , nếu thăng bằng thì 13 đồng còn lại bị lỗi và với 3 lần cân còn lại tìm đc đồng bị lỗi trong 13 đồng như là làm, còn cân lệch thì chia thành 3 nhóm 9,9,8 lấy ghép mỗi bên bên này 4 thì bên kia 5  có 3 khả năng xẩy ra ứng với 3 nhóm có số đồng là 9 hoặc 9, hoặc 8 bị lỗi , nếu 9 đồng bị lỗi thì lại chị làm 3,3,3 khác với bài toán 13 đông xu ta chia đc 3,3,2 do khi cân 2 nhóm số đồng xu cộng lại không thể lẻ đc nhầm tổng quát ở chỗ này

Với 5 lần cân thì ta được số đồng tối đa là 119 , lấy 40 đồng cân với 40 đông , cân thằng bằng thì 39 đông còn lại bị lỗi với 4 lần cân còn lại tìm đc 1 đồng bị lỗi như trên

Với 6 lần cân ta đc số đồng tối đa là 361 đồng lấy 121 cân với 121 đồng nếu cân thằng bằng thì 119 đồng còn lại bị lỗi còn cân lệch thì 242 đồng bị  lỗi cho thêm 1  đồng  không bị lỗi vào ta chia thành 3 nhóm mỗi nhóm có 81 đồng sắp xếp sao cho mỗi bên có 40 hoặc 41 đồng của của lần lượt 2 nhóm trên .

Với 7 lần ta có số đồng tối đa xác định đc là 364+364+361 tổng số là 1089

 với 8 lần cân ta có số đồng tối đa xác định được 1 đồng bị lỗi là : 1093+1093+1089=3275

với 9 lần cân ta luôn được số đồng xu tối đa để tìm được 1 đồng xu bị lỗi là : 3280+3280+3275=9835

 

Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥  3ta luôn có số đồng tiền tối đa xác định đc qua x lần cân là:  . Thì tìm đc 1 đồng tiền bị lỗi. 2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

1
2 tháng 5 2020

ôi ài thế bạn cho bài dễ hơn đi 

:v

a) Theo giả thiết ta có: d = 0 => F = 53 <=> k.a0=53 <=> k = 53

Và d = 12 => F = 160 <=> k.a12=160

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng caoGiải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

c) Từ câu b) => d = 25,119.lgF-43,312

(do yêu cầu kết quả tính chính xác đến hàng phần trăm)

Vậy ta có bảng.

F536080100120140160
d01,354,496,938,9110,6012