\(\Leftrightarrow\) là dấu j

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Dấu tương đương

5 tháng 11 2017

Dấu phải và trái

ọc thành đọc nhé mình viết vội

21 tháng 8 2017

Dấu tương đương bn

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể...
Đọc tiếp

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)

*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)

Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)

Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :

Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể là \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\)

Lí do : Vì x không thể nhận đồng thời 2 giá trị 5 và -5

Nói tóm lại là : Dấu "và" là để biểu thị còn dấu "hoặc" là để chia trường hợp

Ví dụ khác :

Giải phương trình : \(\left|2x+1\right|=5\)

Ta có : \(\left|2x+1\right|=5\)

   \(\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy x = 2 HOẶC x = -3 

Trong trường hợp này không thể dùng dấu "và" vì nếu dùng dấu "và" thì x nhận đồng thời cả 2 giá trị 2 và -3. Điều đó là vô lí !

Nếu muốn các bạn có thể hỏi trực tiếp giáo viên! 

P/: mình từng thấy một vụ cãi vã về việc dùng dấu "và" và dấu "hoặc" nên mình làm bài này để giúp mọi người hiểu rõ hơn !

26
13 tháng 12 2018

và uyên đz đã đúng :3

13 tháng 12 2018

Theo mình,nó đã là định nghĩa của sgk,của nhiều nước trên thế giới thì chúng ta có thể viết 

Nếu |x| = 5 thì \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\) (ở đây nó vẫn biểu thị cho trường hợp nhé) nhưng không được viết \(x=\hept{\begin{cases}5\\-5\end{cases}}\) vì x không đồng thời thỏa mãn cả hai trường hợp. Mình từng tham gia vụ cãi về việc dùng dấu nên xin nêu ý kiến.Còn lại tùy bạn,tùy người chấm thi.Như có trường mình thì dùng dấu nào chả được? Vả lại khuyến khích dùng dấu của định nghĩa là đàng khác!

28 tháng 2 2020

giải luôn à, tiện thật

14 tháng 1 2018

Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi a = b.

Cauchy-shwarz:

\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow bx^2\left(a+b\right)+ay^2\left(a+b\right)\ge\left(x+y\right)^2ab\)

\(\Leftrightarrow\left(abx^2-abx^2\right)+\left(aby^2-aby^2\right)+\left(bx\right)^2-2bxay+\left(ay\right)^2\ge0\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) luôn đúng

Dấu \("="\) xảy ra khi \(bx=ay\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

14 tháng 1 2018

Hằng đẳng thức thứ 2 à

6 tháng 2 2020

Thanks !!!!!!!!!!!!!!!

1 tháng 7 2018

\(a)\) \(M_{\left(3\right)}=3+3^2+3^3+...+3^{2016}\)

\(3M_{\left(3\right)}=3^2+3^3+3^4+...+3^{2017}\)

\(3M_{\left(3\right)}-M_{\left(3\right)}=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)

\(2M_{\left(3\right)}=3^{2017}-3\)

\(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)

Vậy \(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)

\(M_{\left(-3\right)}=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2016}\)

\(\left(-3\right)M_{\left(-3\right)}=\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+...+\left(-3\right)^{2017}\)

\(\left(-3\right)M_{\left(-3\right)}-M_{\left(-3\right)}=\left[\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2017}\right]-\left[\left(-3\right)+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]\)\(\left(-4\right)M_{\left(-3\right)}=\left(-3\right)^{2017}+3\)

\(M_{\left(-3\right)}=\frac{\left(-3\right)^{2017}+3}{-4}\)

\(M_{\left(-3\right)}=\frac{-\left(3^{2017}-3\right)}{-4}\)

\(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)

Vậy \(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(b)\) Ta có : 

\(M_{\left(2\right)}=2+2^2+2^3+...+2^{2016}\)

\(M_{\left(2\right)}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(M_{\left(2\right)}=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(M_{\left(2\right)}=2.7+2^4.7+...+2^{2014}.7\)

\(M_{\left(2\right)}=7\left(2+2^4+...+2^{2014}\right)⋮7\) \(\left(1\right)\)

Lại có : 

\(M_{\left(2\right)}=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)

\(M_{\left(2\right)}=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{2013}\left(1+2+2^2+2^3\right)\)

\(M_{\left(2\right)}=2.15+2^5.15+...+2^{2013}.15\)

\(M_{\left(2\right)}=15\left(2+2^5+...+2^{2013}\right)⋮15\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(M_{\left(2\right)}\) chia hết cho \(7\) và \(15\)

\(\Rightarrow\)\(M_{\left(2\right)}⋮105\) ( vì \(7.15=105\) ) 

Vậy nếu \(M⋮105\)\(\Leftrightarrow\)\(x=2\)

Chúc bạn học tốt ~ 

30 tháng 10 2016

\(\cup\) là kí hiệu hợp đó bạn