Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
\(A=\frac{13}{19}.\left(x.x^5.\right).\left(y^3.y\right).1=\frac{13}{19}.x^6.y^4\)
1) Tìm x, y biết : \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có :
\(\left|x-y\right|\ge0\forall x;y\)
\(\left|y+\frac{9}{25}\right|\ge0\forall y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\frac{9}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-\frac{9}{25}\end{matrix}\right.\)
Vậy : \(x=y=-\frac{9}{25}\)
2) Tìm x biết :
a) \(\left|x+\frac{2}{11}\right|>\left|-5,5\right|\)
\(\Rightarrow\left|x+\frac{2}{11}\right|>5,5=\frac{11}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{2}{11}>\frac{11}{2}\\x+\frac{2}{11}>-\frac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\frac{11}{2}-\frac{2}{11}=\frac{117}{22}\\x>-\frac{11}{2}-\frac{2}{11}=-\frac{125}{22}\end{matrix}\right.\Rightarrow x>-\frac{125}{22}\)
Vậy : \(x>-\frac{125}{22}\)
Đúng không ta ? Mình không chắc lắm ....
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Thanks !!!!!!!!!!!!!!!