K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

yêu cầu bài là gì vậy bạn

9 tháng 6 2017

Với mọi n ,ta luôn có:

n+1<n+2 và n+3<n+5

Vì n+1<n+2.

=>\(\frac{n+1}{n+5}< \frac{n+2}{n+3}\)

Vì n+3<n+5.

=>\(\frac{n+2}{n+5}< \frac{n+2}{n+3}\)

=>\(\frac{n+1}{n+5}< \frac{n+2}{n+3}\)

Vậy....

8 tháng 8 2016

mk ko bt

27 tháng 2 2018

a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\)  \(\left(m\ne0\right)\)

\(\frac{15}{6.m}=\frac{m}{6.m}+\frac{2.m.n}{6.m}\)

\(\frac{15}{6.m}=\frac{m+2mn}{6.m}\)

\(m+2mn=15\)

\(m\left(1+2n\right)=15\)

\(\Rightarrow m\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

Với m = 1, 1 + 2n = 15 hay n = 7.

Với m = 3, 1 + 2n = 5 hay n = 2

Với m = 5, 1 + 2n = 2 hay n = 1

Với m = 15, 1 + 2n = 1 hay n = 0.

Vậy ta tìm được 4 cặp (m;n) thỏa mãn là: (1;7) , (3;2) , (5;1) và (15;0)

Câu b, c hoàn toàn tương tự.

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~