K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: 32010 + 52010 = (33)670 + (52)1005 = 27670 + 251005 = (26 + 1)670 + (26 - 1)1005 = 26A + 1670 - 11005 = 26A chia hết cho 13

=> 32010 + 52010 chia hết cho 13

t i c k nha!!!  6756845645765576599435256344465757686878976

21 tháng 11 2021

=1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 :}

18 tháng 9 2016

Đặt \(A=3+3^2+...+3^{2010}\)

Vì A có 2010 số hạng nên ta chia A thành 670 nhóm,mỗi nhóm 3 số hạng

Ta có: \(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{2008}.13\)

\(=13.\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13

\(\Rightarrow A\)chia hết cho 13

Vậy, A chia hết cho 13

tích mik nhé. Cảm ơn

18 tháng 9 2016

31+ 32+ 33+ 34 +...+32009+32010 

= ( 3+32 +33) +( 34 + 35 + 36)+...+ (32008+32009+32010)

= 3 (1+ 3+ 32) +34 (1+3+32) +...+ 32008( 1+ 3+ 32)

= 3.13 + 34 .13+...+ 32008 .13

= (3+ 34+...+ 32008) .13

Vì 13 chia hết cho 13

=> (3+ 34+...+ 32008) .13 cũng chia hết cho 13 ( đpcm)

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà

28 tháng 12 2016

A = 3 + 3^2 + ......+ 3^2010

= (3+3^2) +...+(3^2009+3^2010)

= 3(1+3) +....+ 3^2009(1+3)

= 4( 3+ .... + 3^2009) chia hết cho 4 

28 tháng 12 2016

A = 3+ 3^2 + 3^3 +....+ 3^2010

= (3+3^2+3^3)+.....+(3^2008+3^2009+3^2010)

= 3(1+3+3^2 ) + .....+ 3^2008(1+3+3^2)

= (3+.....+3^2008) x 13 chia hết cho 13

31 tháng 12 2017

tổng 102010+8 ko chia hết cho 9

tổng 102010+14 ko chia hết cho 3,2

tổng 102010+-4 ko chia hết cho 3