K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Đặt \(A=3+3^2+...+3^{2010}\)

Vì A có 2010 số hạng nên ta chia A thành 670 nhóm,mỗi nhóm 3 số hạng

Ta có: \(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{2008}.13\)

\(=13.\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13

\(\Rightarrow A\)chia hết cho 13

Vậy, A chia hết cho 13

tích mik nhé. Cảm ơn

18 tháng 9 2016

31+ 32+ 33+ 34 +...+32009+32010 

= ( 3+32 +33) +( 34 + 35 + 36)+...+ (32008+32009+32010)

= 3 (1+ 3+ 32) +34 (1+3+32) +...+ 32008( 1+ 3+ 32)

= 3.13 + 34 .13+...+ 32008 .13

= (3+ 34+...+ 32008) .13

Vì 13 chia hết cho 13

=> (3+ 34+...+ 32008) .13 cũng chia hết cho 13 ( đpcm)

19 tháng 11 2015

Ta có: \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)      

           _____________________________________

                         Có (2010-1)/1+1=2010(số)

        =\(\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)

          ___________________________________________________________________________

                                                   Có 2010 : 3 = 670( nhóm )

         =\(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

         =\(\left(1+3+3^2\right)\left(3+3^4+...+3^{2008}\right)\)

         =\(13\left(3+3^4+....+3^{2008}\right)\)

Vì 13 chia hết cho 13 nên \(13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13 

Hay \(3^1+3^2+3^3+...+2^{2009}+2^{2010}\)chia hết cho 13

                  Vậy \(3^1+3^2+3^3+...+3^{2009}+3^{2010}\)chia hết cho 13

Tick nha!!!     

18 tháng 11 2015

\(A=3^1+3^2+3^3+................+3^{2009}+3^{2010}\)

\(3A=3^2+3^3+3^4+..........+3^{2010}+3^{2011}\)

\(3A-A=3^{2011}-3^1\)

\(2A=\left(3^{2011}-3^1\right):2\)

Tick nha

21 tháng 12 2020

B = 3 + 32 + 33 + ... + 32009 + 32010

= ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )

= 3( 1 + 3 + 32 ) + ... + 32008( 1 + 3 + 32 )

= 3.13 + ... + 32008.13

= 13( 3 + ... + 32008 ) chia hết cho 13

hay B chia hết cho 13 ( đpcm )

13 tháng 1 2017

3 + 32 + 33 + ....... + 32009 + 32010

= (3 + 32 + 33) + (34 + 35 + 36) + .......... + (32008 + 32009 + 32010)

= 3.(1 + 3 + 9) + 34.(1 + 3 +9) + ........... + 32008.(1 + 3 + 9)

= 3.13 + 34.13 + ......... + 32008.13

= 13 . (3 +34 + ......... + 32008)

Ta có: 

3 + 32 + 33 + ......... + 32009 + 32010

= ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + .......... + 32007 ( 31 + 32 + 33 )

= 39 + 33 . 39 + ............. + 32007 . 39

= 39 ( 1 + 33 + .......... + 32007 ) 

Vì 39 chia hết cho 13 nên biểu thức này chia hết cho 13

15 tháng 12 2015

B=3+3^2+3^3+..+3^2009+3^2010

=(3+3^2+3^3)+...+(3^2008+3^2009+3^2010)

=3(1+3+3^2)+..+3^2008(1+3+3^2)

=13(3+...+3^2008) chia hết cho 13

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .

12 tháng 12 2015

\(\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{2008}+3^{2009}+3^{2010}\right)=\)

\(3\left(1+3^1+3^2\right)+3^4\left(1+3^1+3^2\right)+.....+3^{2008}\left(1+3^1+3^2\right)=\)

\(13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13 (Đề đúng là \(3^{2010}\)