\(A=3+3^2+3^3+...+3^{2010}\) chia hết cho 4 và 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

A = 3 + 3^2 + ......+ 3^2010

= (3+3^2) +...+(3^2009+3^2010)

= 3(1+3) +....+ 3^2009(1+3)

= 4( 3+ .... + 3^2009) chia hết cho 4 

28 tháng 12 2016

A = 3+ 3^2 + 3^3 +....+ 3^2010

= (3+3^2+3^3)+.....+(3^2008+3^2009+3^2010)

= 3(1+3+3^2 ) + .....+ 3^2008(1+3+3^2)

= (3+.....+3^2008) x 13 chia hết cho 13

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

18 tháng 2 2015

Chia hết cho 13

B=(3*1+3*3+3*32)+(34*1+34*3+34*32)+...+(32008*1+32008*3+32008*32)

B=3*(1+3+32)+34*(1+3+32)+...+32008*(1+3+32)

B=3*(1+3+9)+34*(1+3+9)+...+32008*(1+3+9)

B=3*13+34*13+...+32008*13

B=(3+34+...+32008)*13 chia hết cho 13(Vì 13 chia hết cho 13)

Vậy B chia hết cho 13

18 tháng 2 2015

Ta có:

          B = 31 + 32 + 33 + 34 + ... + 32010

              = ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + ... + 32007 ( 31 + 32 + 33 )

              = 39 + 33 . 39 + ... + 32007 . 39

              = 39 ( 1 + 33 + ... + 32007 )

          →   B chia hết cho 39 mà 39 chia hết cho 13 nên B chia hếtt cho 13

21 tháng 11 2016

Ta có :\(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=\left(2+2^3+...+2^{2009}\right)\cdot3\) chia hết cho 3

=> A chia hết cho 3 ( đpcm )

Ta lại có : \(A=2^1+2^2+2^3+...+2^{2010}\)

\(=\left(2^1+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2\cdot7+...+2^{2008}\cdot7\)

\(=\left(2+...+2^{2008}\right)\cdot7\) chia hết cho 7

Vậy A chia hết cho cả 3 và 7 ( đpcm )

21 tháng 11 2016

đpcm là gì hả bạn

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120

       =(3+3^2+3^3)+......+(3^118+3^119+3^120)

       =3(1+3+3^2)+....+3^118(1+3+3^2)

        = 3.13+...+3^118. 13

        = 13( 3+...+3^118) chia hết cho 13

c, A = 3+3^2 +3^3 + 3^4 +....+3^120

       = (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)

       = 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)

       = 3.40+ ...+3^117 .40

      = 40 .( 3+....+3^117) chia hết cho 40

1 tháng 1 2017

1/mình bó tay

2/Gọi d là ƯCLN(2n+3,3n+5)

Hay 3n+5-2n+3 chia hết cho d

Hay 2(3n+5)-3(2n+3) chia hết cho d

Hay 6n+10-6n+9 chia hết cho d

Hay 1 chia hết cho d

Hay d=1

Vậy 2n+3,3n+5 là 2 số nguyên tố cùng nhau

3/bó tay luôn

4/A=2+22+23+24+...+22009+22010

A=(2+22)+(23+24)+...+(22009+22010)

A=2(1+2)+23(1+2)+...+22009(1+2)

A=2.3+23.3+...+22009.3

A=3(2+23+...+22009) chia hết cho 3

Mặt khác:

A=(2+22+23)+(24+25+26)+...+22008+22009+22010

A=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)

A=2.7+24.7+...22008(1+2+22)

A=7(2+24+...+22008) chia hết cho 7