K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

                                                                               \(=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)

                                                                                                                                 \(=\frac{1}{2}+\frac{1}{101}\)

mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)

=> đ p c m

11 tháng 11 2016

Ta có:

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\right)\)

\(A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{99}{2^{99}}-\frac{100}{2^{100}}\)

\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(A=1+\frac{3}{4}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow A=1+\frac{3}{4}+B-\frac{100}{2^{99}}\) (1)

Ta có:

\(B=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}...+\frac{1}{2^{99}}\)

\(\Rightarrow2B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}...+\frac{1}{2^{98}}\)

\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

\(B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(B=\frac{1}{2^2}+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)

\(B=\frac{1}{4}+0+0+...+0-\frac{1}{2^{99}}\)

\(B=\frac{1}{4}-\frac{1}{2^{99}}\)

Từ (1)

\(\Rightarrow A=1+\frac{3}{4}+\left(\frac{1}{4}-\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(A=\frac{7}{4}+\frac{1}{4}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(A=2-\frac{2}{2^{100}}-\frac{100}{2^{100}}\)

\(A=2-\frac{102}{2^{100}}\)

Vậy \(A=2-\frac{102}{2^{100}}\)

7 tháng 3 2017

\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)

\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)

\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)

\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)

7 tháng 3 2017

101/12 bạn nha

CHÚC BẠN HỌC GIỎI

9 tháng 7 2021

Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)

=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)

=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)

=> 48S = \(1-\frac{1}{7^{100}}\)

=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)

Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)

9 tháng 2 2017

A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)

trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:

A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),

Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)

Vậy A>\(-\frac{1}{2}\)

15 tháng 3 2020

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}\)(100 số hạng \(\frac{1}{\sqrt{100}}\))

\(=\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)(ĐPCM)