Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế với vế của 99 bất đẳng thức trên ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99\cdot\frac{1}{10}=\frac{99}{10}\)
=> A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)
Lớp 7 vừa học hằng đẳng thức, chú ý hằng đẳng thức sau: (a - b)(a + b) = a2 - b2.
Bạn cần khử căn dưới mẫu và cộng tổng bên trái, muốn vậy bạn phải đánh giá từng phân số bằng cách làm trội nó
Sử dụng đánh giá sau: \(\frac{1}{\sqrt{k}}>\frac{1}{\sqrt{k}+\sqrt{k-1}}=\sqrt{k}-\sqrt{k-1}\)
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{10}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=10\)(đpcm)
Ta có :
\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được :
\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\) ( đpcm )
Vậy \(A>10\)
Chúc bạn học tốt ~
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(VT>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}+\frac{1}{\sqrt{100}}\)
\(=\frac{1}{10}+\frac{1}{10}\) có 100 số hạng
\(=\frac{100}{10}=10\)
Dòng 6 cuối cùng mình làm cũng không được chắc chắn lắm đâu òng 6 đấy bạn ngoặc ở dưới 1/10 +1/10 nhé
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
.......
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)
Ta có :
\(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
.....
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế theo vế ta có :\(\frac{1}{\sqrt{1}}\frac{1}{\sqrt{2}}+......+\frac{1}{\sqrt{99}}+\frac{1}{100}>100.\frac{1}{10}=10\)
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
..........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng các vế lại ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}.100=10\)
Vậy...
Vì
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
.............................
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế với vế ta được :
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+....+\frac{1}{10}\) ( có 100 số \(\frac{1}{10}\) )
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>\frac{100}{10}=10\) (đpcm)
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
Khi đó : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}\)(100 số hạng \(\frac{1}{\sqrt{100}}\))
\(=\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)(ĐPCM)