Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\\sqrt{x-1}=-1\left(vn\right)\end{matrix}\right.\)
Kl: x=10
**khỏi cần đk**
a) Dùng py-tago ta có thể tính đc BC=10cm
=> sinB=8/10=4/5
cosB=6/10=3/5
b) Ta có AEHF là hình vuông
=> AH=EF=\(\dfrac{AB\cdot AC}{BC}\)=4.8( TỈ SỐ LƯỢNG GIÁC)
c) Trong tam giác vuông AHB có,
AE*AB=AH^2 (1) (TỈ SỐ LƯỢNG GIÁC)
và trong tam giác vuông AHC, có
AF*AC=AH^2 (2)
tỪ (1) VÀ(2) suy ra AB*AE=AF*AC
Dễ dàng chúng minh được:
1,AHB ~ AEH (g.g) => AB.AE=AH2
2,AFH ~ AHC (g.g) => AF.AC=AH2
Do đó AB.AE=AC.AF
Xét phương trình hoành độ giao điểm của (d) và (p):
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x-m+1=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=\left(-1\right)^2-4\left(-m+1\right)=4m-3\)
Để (d) cắt (p) tại 2 điểm thì phương trình (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=1-m\end{matrix}\right.\)
Theo đề bài ta có:
\(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4\left(x_1+x_2\right)}{x_1x_2}-x_1x_2+3=0\)
\(\Leftrightarrow\dfrac{4}{1-m}-\left(1-m\right)+3=0\left(m\ne1\right)\)
\(\Leftrightarrow4-\left(1-m\right)^2+3\left(1-m\right)=0\)
\(\Leftrightarrow m^2+m-6=0\)
\(\Leftrightarrow\left(m-2\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-3\left(ktm\right)\end{matrix}\right.\)
Vậy để (d)cắt (p) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\) thì m=2
Dùng BĐT Bunhiacopski:
Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2\)
\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn
a) trong tứ giác EDCB có 2 góc BEC = góc BDC = 90 cùng nhìn 1 cung chứa góc
nên EDCB là tứ giác nội tiếp => góc DEB + góc C = 180 , mà DEB + AED = 180 ( kề bù ) nên góc ACB=AED ( ĐPCM)
b) kéo dài AO tại H,Gọi K là giao điểm của AO và ED, vì B,H,C,A là các thuộc (O) tứ giác BHCA là tứ giác nội tiếp => góc ABC = góc AHC
cmtt như câu a) góc ADE = góc ABC
=> AHC =ADE => xét 2 tam giác đồng dạng AKD và AHC (g.g)
=> góc ACH = góc AKD . Mà ACH = 90 ( AH là đường kính , C thuộc (O) )
=> góc AKD = 90 => AO vuông tại ED ( đpcm)
thanks bn nha ! <3