K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

a) Dùng py-tago ta có thể tính đc BC=10cm

=> sinB=8/10=4/5

cosB=6/10=3/5

b) Ta có AEHF là hình vuông

=> AH=EF=\(\dfrac{AB\cdot AC}{BC}\)=4.8( TỈ SỐ LƯỢNG GIÁC)

c) Trong tam giác vuông AHB có,

AE*AB=AH^2 (1) (TỈ SỐ LƯỢNG GIÁC)

và trong tam giác vuông AHC, có

AF*AC=AH^2 (2)

tỪ (1) VÀ(2) suy ra AB*AE=AF*AC

22 tháng 10 2017

Dễ dàng chúng minh được:

1,AHB ~ AEH (g.g) => AB.AE=AH2

2,AFH ~ AHC (g.g) => AF.AC=AH2

Do đó AB.AE=AC.AF

24 tháng 3 2017

a) trong tứ giác EDCB có 2 góc BEC = góc BDC = 90 cùng nhìn 1 cung chứa góc

nên EDCB là tứ giác nội tiếp => góc DEB + góc C = 180 , mà DEB + AED = 180 ( kề bù ) nên góc ACB=AED ( ĐPCM)

b) kéo dài AO tại H,Gọi K là giao điểm của AO và ED, vì B,H,C,A là các thuộc (O) tứ giác BHCA là tứ giác nội tiếp => góc ABC = góc AHC

cmtt như câu a) góc ADE = góc ABC

=> AHC =ADE => xét 2 tam giác đồng dạng AKD và AHC (g.g)

=> góc ACH = góc AKD . Mà ACH = 90 ( AH là đường kính , C thuộc (O) )

=> góc AKD = 90 => AO vuông tại ED ( đpcm)

25 tháng 3 2017

thanks bn nha ! <3

5 tháng 8 2020

a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)

<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)

Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)

<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)

=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\) 

=> AE; AF=......

5 tháng 8 2020

b) Lần lượt áp dụng các HTL, ta có: 

\(BE.AE=HE^2\)\(AF.CF=HF^2\)

<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)

Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF

<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL) 

=> \(BC.CF.BC=EF^3\left(đpcm\right)\)

17 tháng 3 2017

dùng sơ đồ hocne với đồng nhất thử đi bạn

có lẻ đc đấy

17 tháng 3 2017

giải chi tiết ra đi bạn

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Lời giải:

a) Áp dụng các công thức trong hệ thức lượng trong tam giác vuông đối với:

Tam giác $ABC$ vuông tại $A$, đường cao $AH$: $\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{m^2}+\frac{1}{n^2}$

$\Rightarrow AH^2=\frac{m^2n^2}{m^2+n^2}$

Tam giác $AHC$ vuông tại $H$ đường cao $HE$: $AH^2=AE.AC$

$\Leftrightarrow \frac{m^2n^2}{m^2+n^2}=AE.n\Rightarrow AE=\frac{m^2n}{m^2+n^2}$

Hoàn toàn tương tự: $AF=\frac{mn^2}{m^2+n^2}$

b) Đề đúng phải là: $EF^3=AE.BC.AF$

Xét tứ giác $AEHF$ có 3 góc vuông nên $AEHF$ là hình chữ nhật.

$\Rightarrow EF=AH\Rightarrow EF^3=AH^3(*)$

Mặt khác:

Theo phần a: $AH^2=AE.AC=AF.AB$

$\Rightarrow AH^4=AE.AF.AB.AC=AE.AF.2S_{ABC}=AE.AF.AH.BC$

$\Leftrightarrow AH^3=AE.AF.BC(**)$

Từ $(*); (**)\Rightarrow EF^3=AE.AF.BC$ (đpcm)

c)

Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABC$, đường cao $AH$ và tam giác vuoogn $AHC$ đường cao $HE$:

$BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}$

$\Leftrightarrow BF.\sqrt{CH.CB}+CE.\sqrt{BH.BC}=AH.BC$

$\Leftrightarrow BF. \sqrt{AC^2}+CE.\sqrt{AB^2}=AH.BC$

$\Leftrightarrow BF.AC+CE.AB=AH.BC$

$\Leftrightarrow (BA-AF)AC+CE.AB=AH.BC$

$\Leftrightarrow AF.AC=CE.AB$

$\Leftrightarrow $AF.AC=\frac{HE^2}{AE}.AB$

$\Leftrightarrow AF.AC=\frac{AF^2}{AE}.AB$

$\Leftrightarrow AE.AC=AF.AB$ (luôn đúng vì cùng bằng $AH^2$)

Vậy........

 

 

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Hình vẽ:

Thầy cô sẵn tiện giúp em luôn nha!

Cho ΔΔ ABC  A, lấy các cạnh AB, AC làm cạnh huyền ta dựng về phía ngoài ΔΔ ABC các tam giác vuông ADB, AEC. M là trung điểm của cạnh huyền BC. DM cắt AB ở F và EM cắt AC ở K.

1) CM 3 điểm D,A,E thẳng hàng

2) CM : DM AB , EM  AC

3) CM : ΔΔ  DME là ΔΔ vuông

 

4) CM : FK // BC , và FK = 1212 BC.

 Mấy bn xem lại đề nha!