Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Vì S A B ⊥ A B C D , S A D ⊥ A B C D mà S A B ∩ S A D = S A nên S A là đường cao của khối chóp
+ Xét tam giác vuông S A C
S A = tan 60 o . A C = 3 . a . 5 = a 15
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Chọn đáp án C
Ta có
⇒ A C là hình chiếu của SC trên mặt phẳng (ABCD)
Lại có ABCD là hình vuông cạnh a nên A C = a 2
Tam giác SAC vuông tại A nên S A = A C . tan S C A ⏜ = a 6
Vậy thể tích khối chóp S.ABCD là V A B C D = a 3 6 3 (đvtt).
Đáp án B
Ta có V S . A B C D = 1 3 S A B C D . S A
Dễ có S A B C D = A B . A C = a . a 3 = 3 a 2 ,
và S A = A C . tan A C S ^ = A C . tan 30 o = a 2 + 3 a 2 . 3 3 = 2 3 3 a .
Từ đây ta suy ra V S . A B C D = 1 3 S A B C D . S A = 1 3 . a 2 3 . 2 3 3 a = 2 3 a 3 .
⇒ Chọn đáp án B.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12