K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để B là con của A 

\(\left\{{}\begin{matrix}m\ge1\\m+1\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m\le2\end{matrix}\right.\) 

Vậy 1 ≤ m ≤ 2

Để A giao B khác rỗng thì \(7-4m< =4-m\)

=>-3m<=-3

=>m>=1

=>Chọn A

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
NV
1 tháng 5 2020

Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)

\(\Rightarrow m\ge\frac{1}{2}\)

14 tháng 12 2022

cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ

 

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

Để \(B\subset A\) \(\left\{\begin{matrix} m+1\leq 1\\ m^2+2\geq 6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\leq 0\\ m^2\geq 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\leq 0\\ (m-2)(m+2)\geq 0\end{matrix}\right.\)

\(\Leftrightarrow m\leq -2\)

5 tháng 3 2017

Đáp án C

10 tháng 10 2023

\(A=\left[m;m+1\right]\)

\(B=\left[0;3\right]\)

\(A\cap B=\varnothing\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1< 0\\m>3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\) thỏa mãn đề bài