K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2022

a, A = 1 + 3 + 32 + .....+32023

A = (1+3) + 32.(1+3) + 34.(1+ 3) +.....+32022.(1+3)

A = (1+3).( 1+ 32 + 34 +....+.32022)

A = 4.(1 + 32 + 34 +.....+32022)

4 ⋮ 4 ⇔ 4.(1 + 32 + 34 +....+32022) ⋮4 ⇔ A ⋮ 4 (đpcm)

b,     A = 1 + 3 + 32 + 3 3 +....+32023

        A = (1 + 3 + 32+ 33) + 34(1+3+32+33) +......+32020(1+3+32+33)

A = (1+3+32)(1 + 34 + 38 + 312 +316 + .....+ 32020)

A = 40. ( 1+34 + 38 + 312 + 316 +....+32020)

vì 40 ⋮ 10 ⇔40.(1+34+38+312+316+...+32020)⋮10 ⇔A ⋮10 (đpcm)

 

 

21 tháng 7 2022

Kết quả của A là: \(\dfrac{3^{2024}-1}{2}\)

\(3^{2024}-1=\left(3^2\right)^{1012}-1=9^{1012}-1\)

Nếu 9 có mũ lẻ thì tận cùng là 9, có mũ chẵn thì tận cùng là 1. 

\(\Rightarrow9^{1012}-1=...1-1=...0\Rightarrow A=...0\div2=...5\) 

Mà A có tận cùng là 5 thì đương nhiên đều không chia hết cho cả 4 và 10

( đpcm )

 

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà

3 tháng 2 2019

a, chứng minh rằng : nếu (ab+cd+eg)  \(⋮\)11 thì abcdeg \(⋮\)11

abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg) 

Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11

=> abcdeg chia hết cho 11(đcpcm)

3 tháng 2 2019

a,có (ab+cd+eg) chia hết cho 11

=>ab chia hết cho 11=>ab*10000 chia hết cho 11 ;cd chia hết cho 11=>cd*100 chia hết cho 11 ;eg chia hết cho 11

abcdeg=ab*10000+cd*100+eg  

Từ 2điều kiện trên =>abcdeg chia hết cho 11

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

9 tháng 11 2017

Bài 1: 

a)CMR: ab + ba chia hết cho 11 

Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)

                                         = 11a + 11b chia hết cho 11                                                                                                                                                                                                                                                                                                              b)CMR: abc - cba chia hết cho 99

Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)

                                         = 99a - 99c chia hết cho 99

Bài 2

  A= (321 + 322 + 323) + ... + (327 + 328 + 329)                                                                                                                                                                               A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)                                          

  A=321 . 13 + ... + 327 . 13  

  A= 13 . (321 + ... + 327) chia hết cho 13