K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

a, chứng minh rằng : nếu (ab+cd+eg)  \(⋮\)11 thì abcdeg \(⋮\)11

abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg) 

Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11

=> abcdeg chia hết cho 11(đcpcm)

3 tháng 2 2019

a,có (ab+cd+eg) chia hết cho 11

=>ab chia hết cho 11=>ab*10000 chia hết cho 11 ;cd chia hết cho 11=>cd*100 chia hết cho 11 ;eg chia hết cho 11

abcdeg=ab*10000+cd*100+eg  

Từ 2điều kiện trên =>abcdeg chia hết cho 11

14 tháng 3 2018

gọi ý thôi nhé!!!!!

a, bn tách

abcdeg = ab.10000 + cd.100 + eg

= a.9999 + cd.99 + (ab+cd+eg)

rồi cm

b, cm chia hết cho 3        > nhóm 2 số

cm chia hết cho 7 --------> nhóm 3 số

cm chia hết cho 15 -------> nhóm 4 số

4 tháng 4 2020

a.Ta có :

abc deg = ab.10000 + cd.100 + eg

              = ab.9999 + cd .99 + ab +cd + eg

              = (ab.9999 + cd .99) +(ab +cd + eg)

Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11

4 tháng 4 2020

Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!

14 tháng 5 2017

t​a có:abcdeg=​1000ab+100cd+eg=999ab+ab+99cd+cd+eg=(999ab+99cd)+(ab+cd+eg)

vì 999ab+99cd chia hết cho 11mà theo bài ra ab+cd+eg​chia hết cho 11.Suy ra abcdeg​chia hết cho 11

14 tháng 5 2017

a, Ta có: abcdeg = ab0000 + cd00 + eg

ab.10000 + cd.100 + eg

ab.9999 + ab + cd.99 + cd + eg

ab.11.909 + ab + cd.11.9 + cd + eg

= 11(ab.909 + cd.9) + (ab + cd + eg)

Vì 11(ab.909 + cd.9) \(⋮\)11 và (ab + cd + eg\(⋮\)11 nên abcdeg \(⋮\)11 (đpcm)

b, Ta có: 1028 + 8 = 100.......008 (27 c/s 0)

Vì 1028 + 8 có 3 chữ số tận cùng là 008 nên 1028 + 8 \(⋮\) 8 (1)

Lại có: 1 + 0 + 0 +....+ 0 + 0 + 8 = 9 \(⋮\)9 => 1028 + 8 \(⋮\) 9  (2)

Mà ƯCLN(8,9) = 1    (3)

Từ (1) ; (2) và (3) suy ra 1028 + 8 \(⋮\)72

7 tháng 6 2016

a,abcdeg = ab.10000+ cd. 100 + eg

= 9999.ab + 99.cd + ab + cd+ eg

=[9999ab +99cd + [ ab + cd + eg]

vi 9999ab +99cd chia het cho 11  va ab + cd + eg chia het cho 11[ theo de bai]

=>dpcm

b] tu bn lam

16 tháng 3 2017

abcdeg =1000ab+100cd+eg =11 (101ab + 11cd )+(ab+cd+eg)

vi ab+cd+eg chia het cho 11 nen abcdeg chia het cho11

16 tháng 3 2017

a) abcdeg = 10000.ab+100.cd+eg  = 9999.ab+99.cd+(ab+cd+eg)

Ta có: 9999.ab và 99.cd luôn chia hết cho 11

Nên nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11

=> Đpcm

18 tháng 7 2016

a) 1033+8=1...0 +8= 1...8 chia hết cho 2 

1+8=9 chia hết cho 9

18 tháng 7 2016

câu b tương tự