K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a.Ta có :

abc deg = ab.10000 + cd.100 + eg

              = ab.9999 + cd .99 + ab +cd + eg

              = (ab.9999 + cd .99) +(ab +cd + eg)

Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11

4 tháng 4 2020

Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!

13 tháng 12 2015

Ta có :abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=﴾9999ab+99cd﴿+﴾ab+cd+eg﴿

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11

=>abcdeg chia hết cho 11 

Vậy nếu có ab+cd+egchia hết cho 11 thì abcdeg chia hết cho 11

18 tháng 7 2016

a) 1033+8=1...0 +8= 1...8 chia hết cho 2 

1+8=9 chia hết cho 9

18 tháng 7 2016

câu b tương tự

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

3 tháng 12 2015

Bài 1:

Để 275x chia hết cho 5 => x = 0 hoặc = 5

Trường hợp 1: 2750 chia hết cho 5

2750 chia hết cho 25

2750 chia hết cho 125

Trường hợp 2: 2755 chia hết cho 5

2755 không chia hết cho 25

2755 không chia hết cho 125

=> x = 0

3 tháng 12 2015

tất nhiên toán BDHSG mà 

 

a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

                               \(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)

                               \(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)

và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

b) \(\cdot A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)

\(A=2.3+...+2^{50}.3\)

\(A=3\left(2+..+2^{50}\right)⋮3\)

các trường hợp còn lại tự lm nhé!!

23 tháng 11 2015

a) B = 2 + 22 + ...... + 260

B = (2 + 22 + 23 + 24) + .... + (267 + 368 + 269 + 270)

B = (1.2 + 1.4 + 1.8 + 1.16) + ..... + (266.2 + 266.4 + 266.8 + 266.16)

A = 1.(2+4+8+16) + .... + 266(2+4+8+16)

A = 1.30 + ... + 266.30

A = 30.(1+24+....+266)

Vậy A chia hết cho 30

Câu b: Tham khảo ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

23 tháng 11 2015

a﴿ B = 2 + 2^2 + ...... + 2^60

B = ﴾2 + 2^ 2 + 2 ^3 + 2 ^4 ﴿ + .... + ﴾2 ^67 + 3^ 68 + 2 ^69 + 2^ 70 ﴿

B = ﴾1.2 + 1.4 + 1.8 + 1.16﴿ + ..... + ﴾2 ^66 .2 + 2 ^66 .4 + 2 ^66 .8 + 2 ^66 .16﴿

B = 1.﴾2+4+8+16﴿ + .... + 2 ^66 ﴾2+4+8+16﴿

B = 1.30 + ... + 2^ 66 .30

B = 30.﴾1+2 ^4+....+2 ^66 ﴿ 

=>B là bội của 30 mà 30 là bội của 15

=>B là bội chủa 15

b/Xét hiệu:

A=9.﴾7x+4y﴿‐2.﴾13x+18y﴿

=>A=63x+36y‐26x‐36y

=>A=37x => A chia hết cho 37

Vì 7x+4y chia hết cho 37

=>9.﴾7x+4y﴿ chia hết cho 37

Mà A chia hết cho 37

=>2.﴾13x+18y﴿ chia hết cho 37

Do 2 và 37 nguyên tố cùng nhau

=>13x+18y chia hết cho 37

Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37

 

9 tháng 11 2017

Bài 1: 

a)CMR: ab + ba chia hết cho 11 

Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)

                                         = 11a + 11b chia hết cho 11                                                                                                                                                                                                                                                                                                              b)CMR: abc - cba chia hết cho 99

Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)

                                         = 99a - 99c chia hết cho 99

Bài 2

  A= (321 + 322 + 323) + ... + (327 + 328 + 329)                                                                                                                                                                               A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)                                          

  A=321 . 13 + ... + 327 . 13  

  A= 13 . (321 + ... + 327) chia hết cho 13

7 tháng 6 2016

a,abcdeg = ab.10000+ cd. 100 + eg

= 9999.ab + 99.cd + ab + cd+ eg

=[9999ab +99cd + [ ab + cd + eg]

vi 9999ab +99cd chia het cho 11  va ab + cd + eg chia het cho 11[ theo de bai]

=>dpcm

b] tu bn lam