Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\right)\)
\(A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=1+\frac{3}{4}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow A=1+\frac{3}{4}+B-\frac{100}{2^{99}}\) (1)
Ta có:
\(B=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}...+\frac{1}{2^{99}}\)
\(\Rightarrow2B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}...+\frac{1}{2^{98}}\)
\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(B=\frac{1}{2^2}+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}+0+0+...+0-\frac{1}{2^{99}}\)
\(B=\frac{1}{4}-\frac{1}{2^{99}}\)
Từ (1)
\(\Rightarrow A=1+\frac{3}{4}+\left(\frac{1}{4}-\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(A=\frac{7}{4}+\frac{1}{4}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(A=2-\frac{2}{2^{100}}-\frac{100}{2^{100}}\)
\(A=2-\frac{102}{2^{100}}\)
Vậy \(A=2-\frac{102}{2^{100}}\)
A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{101}{\left(50.51\right)^2}\)
= \(\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{101}{2500.2601}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{2500}-\frac{1}{2601}\)
= \(1-\frac{1}{2601}=\frac{2600}{2601}\)
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
=> A = \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}.\frac{5049}{10100}\)
= \(\frac{5049}{20200}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{99.100.101}=\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5050}{10100}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5049}{10100}\Rightarrow A=\frac{5049}{10100}:2=\frac{5049}{20200}\)
Từ dãy trên ta có:
(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\)) < vì không có cách nhập hỗn số nên mình đổi ra phân số >
= 2 + 3 + 4 + 5 + 6 + ..........................+ 51
Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số
Chia ra : 50 : 2 = 25 cặp
ta có( 51 + 2 ) x 25 =1325
Vậy tổng trên có kết quả bằng 1325 (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
Ta có :
\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)
= \(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)
= \(2+3+4+5+...+49+50+51\)
= \(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)
= \(50.26,5\)
= 1325
1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)
b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)
\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)
\(=5+1+0,5=6,5\)
2) a) 1/2 + 2/3x = 1/4
=> 2/3x = 1/4 - 1/2
=> 2/3x = -1/4
=> x = -1/4 : 2/3
=> x = -3/8
b) 3/5 + 2/5 : x = 3 1/2
=> 3/5 + 2/5 : x = 7/2
=> 2/5 : x = 7/2 - 3/5
=> 2/5 : x = 29/10
=> x = 2/5 : 29/10
=> x = 4/29
c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007
=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1
=> x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007
=> x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0
=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0
Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0
Nên x + 2008 = 0 <=> x = -2008
Vậy x = -2008
1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)
b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)
<=>\(\frac{2}{3}.x=-\frac{1}{2}\)
<=>\(x=-\frac{3}{4}\)
b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)
<=>\(\frac{2}{5x}=\frac{29}{10}\)
<=>\(x=\frac{29}{4}\)
c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)
<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)
<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)
<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0
<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)
<=>x=-2008
Vậy x=-2008
Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!
\(=\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+...+\left(50\frac{50}{51}+\frac{1}{51}\right)\)
\(=2+3+...+51\)
\(=\frac{\left(2+51\right)50}{2}\)
\(=1325\)
ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)
\(=\frac{1}{2}+\frac{1}{101}\)
mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)
=> đ p c m
A=−13+132−133+...+1350−1351
\(\Rightarrow3A=-1+\frac{1}{3}-\frac{1}{3^2}+....+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(\Rightarrow3A+A=-1+\frac{1}{3}-\frac{1}{3^2}+....+\frac{1}{3^{49}}-\frac{1}{3^{50}}+\left(-\frac{1}{3}+.....-\frac{1}{3^{51}}\right)\)
\(\Rightarrow4A=-1-\frac{1}{3^{51}}\)
\(\Rightarrow A=\frac{-1-\frac{1}{3^{51}}}{4}\)