K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

3 tháng 9 2016

a/\(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)^2=1\)

b/ \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)=\frac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)

c/ \(cos^2\alpha+tan^2\alpha.cos^2\alpha=cos^2\alpha\left(1+tan^2\alpha\right)\)

\(=cos^2\alpha.\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)=cos^2\alpha.\left(\frac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\right)\)

\(=cos^2.\frac{1}{cos^2\alpha}=1\)

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

AH
Akai Haruma
Giáo viên
8 tháng 10 2017

Lời giải:

a) Ta có:

\(a^2-b^2+c^2\geq (a-b+c)^2\)

\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)

\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)\geq 0\)

BĐT trên luôn đúng do \(a\geq b\geq c\)

Do đó ta có đpcm.

b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)

\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)

\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)

\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

BĐT trên luôn đúng do:

\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

Do đó ta có đpcm.

2 tháng 9 2015

bình yên nổi gì? chiến tranh còn hơn cách mạng tháng 8 1945 nữa

12+23+34+45+56+67+78+89+910=3 627 063 605

22 tháng 6 2018

Giải:

a) \(\sqrt{a^4.\left(3-a\right)^2}\)

\(=\sqrt{\left(a^2\left(3-a\right)\right)^2}\)

\(=\left|a^2\left(3-a\right)\right|\)

b) \(\sqrt{27.48.\left(a-3\right)^2}\)

\(=\sqrt{3.9.16.3.\left(a-3\right)^2}\)

\(=\sqrt{3.3.9.16\left(a-3\right)^2}\)

\(=\sqrt{\left(9.4\left(a-3\right)\right)^2}\)

\(=\left|9.4\left(a-3\right)\right|\)

\(=\left|36\left(a-3\right)\right|\)

c) \(\sqrt{48.75a^2}\)

\(=\sqrt{16.3.25.3a^2}\)

\(=\sqrt{\left(4.3.5a\right)^2}\)

\(=\left|4.3.5a\right|\)

\(=\left|60a\right|\)

d) \(\sqrt{2^4.\left(-9\right)^2}\)

\(=\sqrt{2^4.9^2}\)

\(=\sqrt{\left(2^2.9\right)^2}\)

\(=\left|2^2.9\right|\)

\(=\left|36\right|=36\)

Vậy ...

13 tháng 3 2018

a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)

\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)

=> Phương trình có nghiệm

Ta có a + b + c = -5 +3 +2 = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)

b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)

\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)

Nên phương trình có nghiệm

Ta có a + b + c = 7 + 6 +(-13) = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)

c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)

\(\Delta\) = (-7)2 - 4 * 1 * 12= 1

Nên phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)

Vậy phương trình có 2 nghiệm x1=4 và x2=3

d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)

\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)

Nên phương trình có nghiệm

Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0

Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)

e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)

\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)

= 9 - 12m + 4m +24m = 9 + 16m

Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm

Ta có a - b + c = 3- (3-2m) +( -2m)

= 3 -3 + 2m - 2m = 0

Nên phương trình có 2 nghiệm

x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)

f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0

(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))

\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)

= 39+12\(\sqrt{3}\)

Nên phương trình có nghiệm

Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0

Phương trình có 2 nghiệm x1= -1;

x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)