Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
Ta có:
\(a+b+c\ge abc\) (gt)
mà \(a^2+b^2+c^2\ge a+b+c\forall a,b,c\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge abc\left(đpcm\right)\)
Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)
\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012
\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012
Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)
Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)
\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)
\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)
\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)
Ta có : a2 + b2 \(\ge2ab\)
\(c^2+d^2\ge2cd\)
Do abcd = 1 nên cd =\(\dfrac{1}{ab}\)( dùng \(x+\dfrac{1}{x}\ge\dfrac{1}{2}\))
Ta có :\(a^2+b^2+c^2\ge2\left(ab+cd\right)=2\left(ab+\dfrac{1}{ab}\right)\ge4\)(1)
Mặt khác : a(b+c) +b(c+d)+d(c+a)
=(ab+cd)+(ac+bd)+(bc+ad)
=\(\left(ab+\dfrac{1}{ab}\right)+\left(ac+\dfrac{1}{ac}\right)+\left(bc+\dfrac{1}{bc}\right)\ge2+2+2\)
Vậy \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)
*Theo BĐT Cô-si: \(a^2+b^2\ge2ab\) (1) ; \(b^2+c^2\ge2bc\) (2) ; \(c^2+a^2\ge2ca\) (3)
Cộng vế theo vế (1), (2) và (3) ta được \(2P\ge2\left(ab+bc+ca\right)\Leftrightarrow P\ge ab+bc+ca=9\)
Vậy minP = 9, dấu bằng xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=9\\ab+bc+ca=9\end{cases}\Leftrightarrow a=b=c=\sqrt{3}}\)
**Từ giả thiết \(\Rightarrow ab+c\left(a+b\right)=9\Leftrightarrow c=\frac{9-ab}{a+b}\left(+\right)\)mà a, b, c là các số thực \(\ge1\)nên a,b \(\in\)[\(1;+\infty\)), tức là a, b dương vô cực, lớn không giới hạn \(\Rightarrow\left(+\right)\)dương vô cực hay \(a^2+b^2+c^2\)cũng lớn không giới hạn
Do đó: Không tồn tại maxP với điều kiện a, b, c là các số thực \(\ge1\)
***Kết luận: minP = 9 ; maxP không tồn tại
Mình xin lỗi bạn Kim Huệ Thương nhé! Phần GTLN của câu này mình xin phép giải lại, mong bạn thông cảm vì sơ suất của mình nhé!
Ta có: \(a\ge1;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)(1)
Tương tự ta có: \(bc+1\ge b+c\)(2), \(ca+1\ge c+a\)(3)
Cộng vế theo vế (1), (2) và (3) ta được: \(ab+bc+ca+3\ge2\left(a+b+c\right)\Leftrightarrow a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
\(\Leftrightarrow\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-18=18\)
Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a^2+b^2+c^2=18\\ab+bc+ca=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}or\hept{\begin{cases}a=1\\b=4\\c=1\end{cases}or\hept{\begin{cases}a=4\\b=1\\c=1\end{cases}}}}}\)
Xin lỗi bạn nhé! ^_^
Lời giải:
a) Ta có:
\(a^2-b^2+c^2\geq (a-b+c)^2\)
\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)
\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)
\(\Leftrightarrow (a-b)(b-c)\geq 0\)
BĐT trên luôn đúng do \(a\geq b\geq c\)
Do đó ta có đpcm.
b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)
\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)
\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)
\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)
\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
BĐT trên luôn đúng do:
\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
Do đó ta có đpcm.