Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\log_ab=3;\log_ac=-2\)
1. Với \(x=a^3b^2\sqrt{c}\Rightarrow\log_ax=\log_a\left(a^3b^2\sqrt{c}\right)=\log_aa^3+\log_ab^2+\log_ac^{\frac{1}{2}}\)
\(=3+2.3+\frac{1}{2}\left(-2\right)=8\)
2. Với \(x=\frac{a^4\sqrt[3]{b}}{c^3}\) \(\Rightarrow\log_a\frac{a^4\sqrt[3]{b}}{c^2}=\log_aa^4+\log_ab^{\frac{1}{3}}+\log_ac^3\)
\(=4+\frac{1}{3}\log_ab+3\log_ac=4+\frac{1}{3}.3+3\left(-2\right)=-1\)
3. Với \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\Rightarrow\log_a\frac{a^2b^{\frac{1}{3}}c}{a^{\frac{1}{3}}b^3c^{\frac{1}{6}}}=\log_a\frac{a^{\frac{5}{3}}c^{\frac{5}{6}}}{b^{\frac{8}{3}}}=\log_aa^{\frac{5}{3}}-\log_ab^{\frac{8}{3}}+\log_ac^{\frac{3}{2}}\)
\(=\frac{5}{3}-\frac{8}{3}\log_ab+\frac{5}{6}\log_ac=\frac{5}{3}-\frac{8}{3}3+\frac{5}{6}\left(-2\right)=-8\)
a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)
b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:
\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)
\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)
1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)
2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)
3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)
\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)
\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)
\(B=\left(\log b_a+\log_ba+2\right)\left(\log b_a-\log b_{ab}\right)-1=\left(\log b_a+\frac{1}{\log b_a}+2\right)\left(\log b_a.\log_ba-\left(\log_{ab}b.\log_ba\right)\right)-1\)
\(=\frac{\log^2_ab+2\log_ab+1}{\log_ab}\left(1-\log_{ab}a\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{\log_aab}\right)-1\)
\(=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{1+\log_ab}\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}.\frac{\log_ab}{1+\log_ab}-1=\log_ab+1-1=\log_ab\)
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\log_{ab}a\right)-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\frac{1}{1+\log_ab}\right)-1\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log_ba+2\right)-1\)
\(=\frac{1}{1+\log_ab}\left[\left(\log_ab+\log_ba+2\right)-1-\log_ab\right]\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log^2_ba\right)=\log_ab\)
Ta có :
\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)
Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :
\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\) (2)
Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)
hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)
Chứng minh tương tự ta được :
\(a^{\log_bc}+b^{\log_ca}\ge2a\)
\(b^{\log_ca}+c^{\log_ab}\ge2b\)
\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)
hay :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\) (*)
Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\) (2*)
Từ (*) và (2*) ta có :
\(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)