1. 9x^2 + 12x + 5 = 11
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

27 tháng 7 2023

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}

                     

            

21 tháng 6 2016

Cô hướng dẫn nhé.

1. Nhẩm nghiệm để suy ra nhân tử .

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

Xem lại đề câu b, nếu ko ta dùng công thức Cardano.

2.

a. Đặt ẩn phụ.

b. \(B=\left(x+y\right)^2-\left(x+y\right)-12\). Sau đó lại đặt ẩn phụ.

c. Đặt \(x^2+x+1=t\)

d. Ghép: \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+24\)

Đặt \(x^2+7x+10=t\)

21 tháng 6 2016

2a. Đặt \(x^2+x=t\Rightarrow A=t^2-2t-15=t^2-5t+3t-15=\left(t-5\right)\left(t+3\right)\)

Quay lại biến x , ta có  \(\left(x^2+x-5\right)\left(x^2+x+3\right)\)

15 tháng 8 2019

a,

Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)

=>đpcm

b,

Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Rightarrow2a+2=a+b+2\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2=2\) (đpcm)

Bài 1 :Tìm x, biết :a) (1/1.101+1/2.102+...+1/10.110)x = 1/1.11 + 1/2.12 + ...+1/100.110b) (a+b-x)/c + (b+c-x)/a + (c+a-x)/b + 4x/a+b+c = 1Bài 2 :a) Cho x,y,z>1 và x+y+z=1Tìm giá trị nhỏ nhất của : M=(x-2)/z^2 + (y-2)/x^2 + (z-2)/y^2b) Tìm x, biết 1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2 +9x+20) + 1/(x^2+11x+30) = 1/8c) Tìm x ,biet :(x+24)/1996 + (x+25)/1995 + (x+26)/1994 + (x+27)/1993 + (x+2036)/4 = 0Bài 3 a)Cho tam giác nhọn ABC, trực tâm H,M là trung điểm của...
Đọc tiếp

Bài 1 :
Tìm x, biết :
a) (1/1.101+1/2.102+...+1/10.110)x = 1/1.11 + 1/2.12 + ...+1/100.110
b) (a+b-x)/c + (b+c-x)/a + (c+a-x)/b + 4x/a+b+c = 1
Bài 2 :
a) Cho x,y,z>1 và x+y+z=1
Tìm giá trị nhỏ nhất của : M=(x-2)/z^2 + (y-2)/x^2 + (z-2)/y^2
b) Tìm x, biết 
1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2 +9x+20) + 1/(x^2+11x+30) = 1/8
c) Tìm x ,biet :
(x+24)/1996 + (x+25)/1995 + (x+26)/1994 + (x+27)/1993 + (x+2036)/4 = 0
Bài 3 
a)Cho tam giác nhọn ABC, trực tâm H,M là trung điểm của BC. Qua H vẽ đường thẳng d cắt tia AB và AC lần lượt tại D và E sao cho HD=HE.
Chứng minh MH vuông góc với đương thẳng d
b)Qua điểm M nằm trên cạnh AD của hình bình hành ABCD kẻ các đường thẳng MP song song với BD , MQ song song với AC ( M khác A,D và P thuộc AB ,Q thuộc CD) . Chứng minh: diện tích tam giác BMP bằng diện tích tam giác CMQ
Bai 4
a) Cho A=222...222 (n chữ số 2,n thuộc N*).Tìm n để A là tổng bình phương hoặc hiệu bình phương của 2 số tự nhiên 
b)Cho a,b là 2 số dương có tổng bằng 1.Chứng minh: 1/(a+1) + 1/(b+1) lớn hơn hoặc bằng 4/3
Bài 5
1) Cho x,y>0 và x+y=2.Chứng minh: P=x^2.y^2.(x^2+y^2) nhỏ hơn hoặc bằng 2
2) Cho x,z thuộc Q sao cho x+y^2+z^2,X^2+y+z^2,x^2+y^2+z thuộc Z
Chứng minh: 2x thuộc Z

0
2 tháng 8 2017

Ta có : a3 + b= (a + b)(a - ab + b)

Thay ab = 4 và a + b = 5

=> a3 + b= 5(5 - 4)

=> a3 + b= 5

Vậy a3 + b= 5

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt