CMR (1+7+7^2+7^3+...+7^101) chia hết cho 8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

\(1+7+7^2+7^3+...+7^{101}\\=(1+7)+(7^2+7^3)+(7^4+7^5)+...+(7^{100}+7^{101})\\=8+7^2\cdot(1+7)+7^4\cdot(1+7)+...+7^{100}\cdot(1+7)\\=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\\=8\cdot(1+7^2+7^4+...+7^{100})\)

Vì \(8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)

\(\Rightarrowđpcm\)

15 tháng 10 2023

\(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\left(1+7^2+...+7^{100}\right)⋮8\)

25 tháng 10 2014

1 + 7 + 72 + 73 +  ... + 7101 chia hết cho 8

Gọi A = 70 + 71 + 72 + 73 +  ... + 7101

A = ( 70 + 71 ) + ( 72 + 73 )  +  ... + ( 7100 + 7101 )

A = 70 ( 1 + 7 ) + 72 ( 1 + 7 )  +  ... +  7100 ( 1+  7 )

A = 7x 8 + 7x 8  +  ... +  7100  x 8

A = 8 x ( 70 + 72 +  ... +  7100  ) chia hết cho 8 vì có một thừa số chia hết cho 8 ( 8 chia hết cho 8 )

=> A chia hết cho 8

26 tháng 6 2016

cức phân

14 tháng 9 2018

Đặt A = 1 + 7 + 72 + ... + 7101

=> A = 70 + 71 + ... + 7101

=> A = 70 ( 1 + 7 ) + ... + 7100 ( 1 + 7 )

=> A = 70 . 8 + ... + 7100 . 8

=> A = 8 . ( 70 + ... + 7100 ) chia hết cho 8 ( đpcm )

26 tháng 10 2016

A=1+4+42+43+...+42014

A=(1+4+42)+(43+45+46)+...+(42012+42013+22014)

A=21.(1+43+...+42012)

 

B=1+7+72+...+7101

B=(1+7)+(72+73)+...+(7100+7101)

B=8(1+72+...+7100)

25 tháng 10 2016

toán chứng minh dễ mà bn

25 tháng 10 2016

tek bn lm i

5 tháng 8 2016

A) 52018 + 52017 + 52016 = 52016 . (52 + 5 + 1) = 52016 . (25 + 5 + 1) = 52016 . 31

Vì 31 chia hết cho 31 => 52016 . 31 chia hết cho 31

hay 52018 + 52017 + 52016 chia hết cho 31

5 tháng 8 2016

a,52018+52017+52016=52016(1+5+52)=52016.31

=>52018+52017+52016 chia hết cho 31.

b,1+7+72+73+ ....+7101

=(1+7)+(72+73)+...+(7100+7101)

=1.(1+7)+72.(1+7)+...+7100.(1+7)

=8.(1+72+...+7100)

=>1+7+72+...+7101 chia hết cho 8.

28 tháng 10 2019

Đặt A=1+7+72+...+7101

         =(1+7)+(72+73)+...+(7100+7101)

         =8+72(1+7)+...+7100(1+7)

         =8+72.8+...+7100.8

         =8(1+72+...+7100)

\(\Rightarrow A⋮8\)

Vậy A\(⋮\)8

28 tháng 10 2019

 Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )

                 = 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )

                 = 1. 8 + 7^2 . 8 +....+ 7^100 . 8

                 = 8( 1+7^2+....+7^100 )

=> A chia hết cho 8