K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.

=> Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(n+2) chia hết cho cả 2 và 3.

c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]

                                 =n(n+1)(n+2)+n(n+1)(n-1)

Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp

=>Tồn tại 1 số chia hết cho 2.

Tồn tại 1 số chia hết cho 3.

=> n(n+1)(2n+1) chia hết cho 2 và 3.

 

14 tháng 7 2015

bài 3 nah không biết đúng hông nữa 

n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a

theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7

ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3

27 tháng 2 2020

A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)

=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)

=15(2+25+29+...+217)

=30.(1+2⁴+28+...+216) chia hết cho 10

=> A có tận cùng là 0

27 tháng 2 2020

b) Có a-5b chia hết cho 17

=> 10(a-5b) chia hết cho 17.

=> 10a-50b chia hết cho 17.

Mà 51b= 17×3b chia hết cho 17

=> 10a-50b+51b chia hết cho 17

=> 10a+b chia hết cho 17

3 tháng 12 2015

Bài 1:

Để 275x chia hết cho 5 => x = 0 hoặc = 5

Trường hợp 1: 2750 chia hết cho 5

2750 chia hết cho 25

2750 chia hết cho 125

Trường hợp 2: 2755 chia hết cho 5

2755 không chia hết cho 25

2755 không chia hết cho 125

=> x = 0

3 tháng 12 2015

tất nhiên toán BDHSG mà 

 

17 tháng 11 2015

b1:

B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)

A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)

B2: bạn kéo xuống dưới nãy mk thấy có ng làm r

b3: (2x+1)(y-5)=168

Ta có bảng sau: 

2x+112478121421244284168
2x01367111320234183167
x0  3   10    
y-5168  24   8    
y173  29   13    

(mấy ô mk để trống là loại vì x,y là số tự nhiên)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!