Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(1-\frac{1}{100}\right)\)
= \(2.\frac{99}{100}\)
= \(\frac{99}{50}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)
=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101
=1+1-1/101
=201/101
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A<10\cdot\frac{1}{50}+10\cdot\frac{1}{60}+...+10\cdot\frac{1}{90}=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}=\frac{1879}{2520}<\frac{5}{6}\)
Vậy 7/12<A<5/6
Đặt \(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=99.100.101:3\)
\(\Rightarrow A=33.100.101\)
\(\Rightarrow A=333300\)
Đặt A=1.2+2.3+3.4+...+99.100
=>3A=3(1.2+2.3+3.4+...+99.100)
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(98.99.100-98.99.100)+99.100.101
3A=0+0+...+0+99.100.101
3A=99.100.101
A=99.100.101:3
A=333300
Vậy A=333300
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)
Ta có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)
Lại có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)
Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
a, (1 - 1/2 ) .(1-1/3 ) ....(1-1/100) + x = 11/5
<=>1/2.2/3......99/100 +x = 11/5 => 1/100 + x = 11/5 => x = 2, 19
b
Đặt tổng là A
Ta đi nhân 2 vế với 3
Làm đc tiếp chứ
Đây là kiến thức lớp 6 mà
3A= 1.2.3 + 2.3.4 + 3.4.3 +...+ 99.100.3
3A= 1.2.(3-0)+2.3.(4-1)+ 3.4(5-2)+....+ 99.(101-98)
3A= ( 1.2.3+.2.3.4+3.4.5+...+ 99.100.101) - ( 0.1.2+ 1.2.3+ 2.3.4+...+ 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900
A= 999900:3
A= 333300
CHÚC BN HỌC TỐT :))))))))))))