Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(P=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)
=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101
=1+1-1/101
=201/101
1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100
1-1/100<1
Đặt tổng là A
Ta đi nhân 2 vế với 3
Làm đc tiếp chứ
Đây là kiến thức lớp 6 mà
3A= 1.2.3 + 2.3.4 + 3.4.3 +...+ 99.100.3
3A= 1.2.(3-0)+2.3.(4-1)+ 3.4(5-2)+....+ 99.(101-98)
3A= ( 1.2.3+.2.3.4+3.4.5+...+ 99.100.101) - ( 0.1.2+ 1.2.3+ 2.3.4+...+ 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900
A= 999900:3
A= 333300
CHÚC BN HỌC TỐT :))))))))))))
S = 1x2 + 2x3 + 3x4 + ……………… + 11x12 + 12x13
3S=1x2x3 + 2x3x3 + 3x4x3+ ………. + 11x12x3 + 12x13x3
Ta lấy K = 1x2x3 +2x3x4 + 3x4x5 + …… + 11x12x13 + 12x13x14
- 3S = 1x2x3 + 2x3x3 + 3x4x3+ ……… + 11x12x3 + 12x13x3
------------------------------------------------------------------------------------
K – 3S = 0 + 2x3x1 + 3x4x2 + …… .. + 11x12x10 + 12x13x11
K – 3S = K – 12x13x14
Từ đó suy ra: 3S = 12x13x14
S = 4x13x14 = 728
Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728
Đặt \(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=99.100.101:3\)
\(\Rightarrow A=33.100.101\)
\(\Rightarrow A=333300\)
Đặt A=1.2+2.3+3.4+...+99.100
=>3A=3(1.2+2.3+3.4+...+99.100)
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(98.99.100-98.99.100)+99.100.101
3A=0+0+...+0+99.100.101
3A=99.100.101
A=99.100.101:3
A=333300
Vậy A=333300
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(1-\frac{1}{100}\right)\)
= \(2.\frac{99}{100}\)
= \(\frac{99}{50}\)