K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
28 tháng 9 2021

ta có :

\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}+4-\sqrt{7}-2\sqrt{4+\sqrt{7}}.\sqrt{4-\sqrt{7}}\)

\(=8-2\sqrt{16-7}=8-2\sqrt{9}=2\)

vậy \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{2}\)

8 tháng 8 2015

\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

Vậy A = B 

8 tháng 8 2015

A = 11 

B = 7 

--> A > B 

1 tháng 7 2017

dell bt

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

10 tháng 8 2020

a)

Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)

Vậy \(4>1+2\sqrt{2}\)

b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)

Vậy \(4>2\sqrt{6}-1\)

c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\) 

=> \(3\sqrt{3}< 2\sqrt{7}\)

=> \(-3\sqrt{3}>-2\sqrt{7}\)

24 tháng 8 2016

Giả sử \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)\(\le\sqrt{3}\)

<=> 4 + \(\sqrt{7}\)+ 4 - \(\sqrt{7}\)- 2×\(\sqrt{16-7}\)\(\le3\)

<=> 8 - 6 \(\le3\)

<=> 2 \(\le3\)(đúng)

Vậy \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)< √3

24 tháng 8 2016

\(\sqrt{4+7}-\sqrt{4-\sqrt{7}}=2,152902878\)

\(\sqrt{3}=1,732050808\)

Rùi so sánh đi

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)