K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)

11 tháng 8 2017

cau a,b,c thay no co chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)

dang nay co 2 cach

C1: nhanh kho nhin de sai

VD: cau B

\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)

B^3=40+3(2)(B)

B^3=40+6B

B=4

C2: hoi dai nhung de nhin

dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)

de thay B=a+b

            ab=2

            a^3+b^3=40

suy ra B^3=a^3+b^3+3ab(a+b)

B^3=40+6B

B=4

giai tuong tu

con co cach nay nhung it su dung vi kho tim

C3: dua ve tong lap phuong

VD:cau B

 \(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)

\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)

de thay

B=4

cau d)

dung CT nay

\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)

ap dung vao bai

\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)

nhanh vao

\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

10 tháng 7 2017

Ta có :

a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)

NV
7 tháng 4 2019

a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)

\(A=5\sqrt{6}-10\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)

Đến đây ko rút gọn được nữa, nhưng nếu đề là:

\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)

c/

\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)

NV
7 tháng 4 2019

\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)

\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)

\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))

\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)

\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)

\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)

\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)

\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)

\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)

\(\Rightarrow G=2\)

16 tháng 6 2018

a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)

\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)

\(=4\sqrt{10}+4\sqrt{2}\)

c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)

\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)

\(=5\sqrt{7}\)

16 tháng 6 2018

d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)

\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)

\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)

\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)

\(=\dfrac{1+12\sqrt{2}}{4}\)

e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)

\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)

f) bạn xem đề lại nhé