Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(25^{15}=\left(5^2\right)^{15}=25^{30}\)
\(\left(-8\right)^{10}.3^{30}=8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Mà \(25^{30}>6^{30}\) nên \(25^{15}>\left(-8\right)^{10}.3^{30}\)
Vậy \(25^{15}>\left(-8\right)^{10}.3^{30}\)
ta có 25^15=(5^2)^15=5^30
(-8)^10 . 3^30=(2^3)^10 . 3^30=2^30 . 3^30=6^30
vì 5<6 nên 5^30<6^30
vậy 25^15 > (-8)^10 . 3^30
2100và 1030
2100=210.10=(210)10=102410
1030=103.10=(103)10=100010
1024 > 1000
=>102410 > 100010
=>2100>1030
Ta có : 430 = (22)30 = 22.30 = 260
Lại có : 820 = (23)20 = 23.20 = 260
Vì 260 = 260
=> 430 = 820
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
2727>2726=(272)13=72913>243132727>2726=(272)13=72913>24313
⇒2727>24313⇒2727>24313
⇒−2727<−24313⇒−2727<−24313
⇒(−27)27<(−243)13⇒(−27)27<(−243)13
b) (18)25>(18)26=(182)13=(164)13>(1128)13(81)25>(81)26=(821)13=(641)13>(1281)13
⇒(18)25>(1128)13⇒(81)25>(1281)13
⇒(−18)25<(−1128)13⇒(−81)25<(−1281)13
c) 450=(45)10=102410450=(45)10=102410
830=(83)10=51210<102410830=(83)10=51210<102410
⇒450>830⇒450>830
d) (19)17<(19)12<(127)12(91)17<(91)12<(271)12
⇒(19)17<(127)12⇒(91)17<(271)12
Bài làm :
\(\frac{125^6.3^{61}.8^{10}}{4^{15}.25^9.9^{30}}\)
\(=\frac{\left(5^3\right)^6.3^{61}.\left(2^3\right)^{10}}{\left(2^2\right)^{15}.\left(5^2\right)^9.\left(3^2\right)^{30}}\)
\(=\frac{5^{18}.3^{61}.2^{30}}{2^{30}.5^{18}.3^{60}}\)
\(=3\)
Học tốt nhé
Bài làm :
Ta có :
\(\frac{125^6.3^{61}.8^{10}}{4^{15}.25^9.9^{30}}\)
\(=\frac{\left(5^3\right)^6.3^{61}.\left(2^3\right)^{10}}{\left(2^2\right)^{15}.\left(5^2\right)^9.\left(3^2\right)^{30}}\)
\(=\frac{5^{18}.3^{61}.2^{30}}{2^{30}.5^{18}.3^{60}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(25^{15}=5^{30}\)
\(8^{10}\cdot3^{30}=6^{30}\)
Do đó: \(25^{15}< 8^{10}\cdot3^{30}\)