K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

2^3^2^3=2^3^(2^3)=2^3^8=2^(3^8).

3^2^3^2=3^2^(3^2)=3^2^9=3^(2^9).

so sánh 2 kết quả bằng máy tính là dc.

đây là lũy thừa tầng,em chắc chắn lun.

tk cho em nha em mới lớp 6.

-chúc ai tk cho em/mk học giỏi và may mắn ,thanks các bn nhìu-

20 tháng 4 2017

2^3^2^3=2^3^8=224=(24)6=166

3^2^3^2=3^2^9=318=(33)6=276

Vì 276>166 nên 3^2^3^2>2^3^2^3

17 tháng 7 2019

Ta có:Đặt A =  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A  = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\)

=> A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

=> A < \(1-\frac{1}{n}\) < 1

=> A < 1

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

17 tháng 7 2019

Với mọi số tự nhiên n ≥ 2

31 tháng 7 2016

vãi cả mình đang cần gấp . Trong khi thứ 2 mới học

 

4 tháng 8 2023

a, \(\dfrac{515}{605}\) < \(\dfrac{515+1}{605+1}\) = \(\dfrac{516}{606}\) vậy \(\dfrac{515}{605}< \dfrac{516}{606}\)

b, - \(\dfrac{2}{3}\) và \(\dfrac{3}{-2}\)  Vì   - \(\dfrac{2}{3}\) > -1;     \(\dfrac{3}{-2}\) < - 1  Vậy - \(\dfrac{2}{3}\) >  \(\dfrac{3}{-2}\)

c, - \(\dfrac{17}{16}\) và \(\dfrac{30}{7}\) vì - \(\dfrac{17}{16}\) < 0 <  \(\dfrac{30}{7}\)  nên - \(\dfrac{17}{16}\) < \(\dfrac{30}{7}\)

d, - \(\dfrac{16}{279}\) và  - \(\dfrac{16}{217}\) vì \(\dfrac{16}{279}\) < \(\dfrac{16}{217}\) nên - \(\dfrac{16}{279}\) > - \(\dfrac{16}{217}\) 

 

 

 

4 tháng 8 2023

Để so sánh các số hữu tỉ, chúng ta có thể chuyển về cùng một mẫu số và so sánh tử số.

So sánh 515/605 và 516/606:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 1001 (là tích của 11 và 91).
515/605 = (515 * 1001) / (605 * 1001) = 515515 / 605605
516/606 = (516 * 1001) / (606 * 1001) = 516516 / 606606

Vì 515515 < 516516, và 605605 < 606606, nên ta có: 515/605 < 516/606.

So sánh -2/3 và 3/-2:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với -1.
-2/3 = (-2 * -1) / (3 * -1) = 2 / -3
3/-2 = (3 * -1) / (-2 * -1) = -3 / 2

Vì 2 > -3, và -3 < 2, nên ta có: -2/3 > 3/-2.

So sánh -17/16 và 30/7:
Để chuyển về cùng mẫu số, ta nhân cả tử và mẫu của cả hai phân số với 112 (là tích của 16 và 7).
-17/16 = (-17 * 112) / (16 * 112) = -1904 / 1792
30/7 = (30 * 112) / (7 * 112) = 3360 / 784

Vì -1904 < 3360, và 1792 > 784, nên ta có: -17/16 < 30/7.

So sánh -16/279 và -16/217:
Để chuyển về cùng mẫu số, ta không cần thay đổi gì vì cả hai phân số đã có cùng mẫu số.
-16/279 và -16/217 có cùng tử số và mẫu số, nên chúng bằng nhau: -16/279 = -16/217.

Tóm lại:

515/605 < 516/606
-2/3 > 3/-2
-17/16 < 30/7
-16/279 = -16/217

30 tháng 10 2016

Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016 

=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017

=> 2A - A = (  2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )

=> A = 2^2017 - 1

=> A < 2^2017 

Vậy A < 2^2017

30 tháng 10 2016

Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016

     => 2A = 2 + 22 + 23 + ...+22017

      => 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )

        =>    A      =    22017 - 1

Mà 22017 - 1 < 22017

=> A < 22017

Vậy 1 + 2 + 22 + ...+ 22016 < 22017

4 tháng 8 2017

2^30 * 3^30 < 3^10 * 24^10

Mình nghĩ thế

Đi qua tk nhé

4 tháng 8 2017

:) Mình giải giúp bạn nhé :)

\(2^{30}.3^{30}\)và \(3^{10}.24^{10}\)

\(\Leftrightarrow\left(2.3\right)^{30}=6^{30}\)

\(\Leftrightarrow\left(3.24\right)^{10}=72^{10}\)

\(\Leftrightarrow6^{30}=72^{360}\)

mà 360 > 10 nên \(2^{30}.3^{30}>3^{10}.24^{10}\)

:)

7 tháng 8 2018

mik ngĩ chắc là = nhau 

7 tháng 8 2018

Ta có: \(3^{2^3}\)\(=3^8\)

          \(3^{3^2}=3^9\)

Vì 38<39

Nên \(3^{2^3}< 3^{3^2}\)

7 tháng 12 2016

Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

=>\(8^{50}< 9^{50}\)

=>\(2^{150}< 3^{100}\)

7 tháng 12 2016

cảm ơn  đi rồi có sau 3p

6 tháng 7 2021

Trả lời:

\(x=\frac{9^{11}+2}{9^{11}+3}=\frac{9^{11}+3-1}{9^{11}+3}=\frac{9^{11}+3}{9^{11}+3}-\frac{1}{9^{11}+3}=1-\frac{1}{9^{11}+3}\)

\(y=\frac{9^{12}+2}{9^{12}+3}=\frac{9^{12}+3-1}{9^{12}+3}=\frac{9^{12}+3}{9^{12}+3}-\frac{1}{9^{12}+3}=1-\frac{1}{9^{12}+3}\)

Ta có: \(9^{11}< 9^{12}\)

\(\Leftrightarrow9^{11}+3< 9^{12}+3\)

\(\Leftrightarrow\frac{1}{9^{11}+3}>\frac{1}{9^{12}+3}\)

\(\Leftrightarrow-\frac{1}{9^{11}+3}< -\frac{1}{9^{12}+3}\)

\(\Leftrightarrow1-\frac{1}{9^{11}+3}< 1-\frac{1}{9^{12}+3}\)

\(\Leftrightarrow x< y\)

Vậy x < y